Sławomir Kubacki

Sławomir Kubacki

Stopień naukowy: dr hab. inż.
Stanowisko: prof. uczelni

Instytut: Techniki Lotniczej i Mechaniki Stosowanej
Zakład: Aerodynamiki
Pokój: 116

Telefon: (022) 234 13 52
Telefon 2: (022) 234 60 26
Fax: (022) 622 09 01
E-mail: Slawomir.Kubacki@pw.edu.pl

Funkcje pełnione poza PW

- koordynator, razem z prof. Daniele Simoni (UNIGE), Grupy Badawczej SIG10 on "Transition Modelling" ERCOFTAC (European Research Community on Flow, Turbulence and Combustion)

- sekretarz Polskiego Centrum Pilotowego ERCOFTAC

Zainteresowania naukowe

  • modelowanie przepływów turbulentnych, 
  • modelowanie przejścia laminarno-turbulentnego, 
  • modele hybrydowe RANS-LES, 
  • Symulacja Wielkich Wirów, 
  • przepływy w maszynach wirnikowych, 
  • modelowanie procesów wymiany ciepła i masy.

Wybrane publikacje

Czasopisma naukowe:

  1. Sokolenko V.,  Dróżdż A., Rarata Z., Kubacki S., Elsner W., 2024, Experimental study of a separated shear layer transition under acoustic excitation, Experimental Thermal and Fluid Science, 157, 111227, https://doi.org/10.1016/j.expthermflusci.2024.111227.
  2. Prusiński P., Kubacki S., 2024, Pipe to annular flow conversion: Numerical study, Annals of Nuclear Energy, 202, 110467, https://doi.org/10.1016/j.anucene.2024.110467.
  3. Jagodzińska I., Olszański B., Gumowski K., Kubacki S., 2024, Experimental investigation of subsonic and transonic flows through a linear turbine cascade, European Journal of Mechanics / B Fluids, 103, 182–192, https://doi.org/10.1016/j.euromechflu.2023.10.002.
  4. Rarata Z., Dróżdż A., Gnatowska R., Sokolenko V., Elsner W., Kubacki S., 2023, Numerical study of an acoustic field effect on boundary layer transition mechanism, International Journal of Heat and Fluid Flow, 104, 109238/1-12, https://doi.org/10.1016/j.ijheatfluidflow.2023.109238.
  5. Kubacki S., Dick E., 2023, Improved prediction of low-pressure turbine wake mixing by Delayed Detached Eddy Simulation, including an algebraic model for bypass transition, International Journal of Heat and Fluid Flow, 103, 109206/1-15, https://doi.org/10.1016/j.ijheatfluidflow.2023.109206
  6. Kubacki S., Rarata Z., Dróżdż A., Gnatowska R., Sokolenko V., Elsner W., 2023, Prediction of laminar-to-turbulent transition in a separated boundary layer subjected to an external acoustic forcing, Archives of Mechanics, 75 (5), 591–616, https://am.ippt.pan.pl/am/article/view/v75p591.
  7. Kurec K., Olszański B., Gumowski K., Klamka M., Remer M., Piechna J., Kubacki S., 2023, Air curtain as a SARS-CoV-2 spreading mitigation method in a small aircraft cabin, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, V0(0) 1–25, https://doi.org/10.1177/09544100231153703
  8. Drężek P.S., Kubacki S., Żółtak J., 2022, Multi-objective surrogate model-based optimization of a small aircraft engine air-intake duct, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, V0(0) 1–13, https://journals.sagepub.com/doi/10.1177/09544100211070868.
  9. Kubacki S., Simoni D., Lengani D., Dellacasagrande M., Dick E., 2021, Extension of an algebraic intermittency model for better prediction of transition in separated layers under strong free-stream turbulence, International Journal of Heat and Fluid Flow, 92, 108860/1-16, 
    https://doi.org/10.1016/j.ijheatfluidflow.2021.108860.
  10. Rarata Z., Dacko A., Barciński  T., Polak Sz., Musiał J., Kubacki S., Kowalski  T., Sikorski A.,  Baran J., 2021, Vibro-acoustic response of spacecraft instrument subjected to diffuse sound field: Numerical simulations and experimental verification, Applied Acoustics, 184, 108338/1-14, https://doi.org/10.1016/j.apacoust.2021.108338.
  11. Kubacki S., Lengani D., Simoni D., Dick E., 2020, An extended version of an algebraic intermittency model for prediction of separation-induced transition at elevated free-stream turbulence level, International Journal of Turbomachinery, Propulsion and Power, 5 (28), 1-24. 
  12. Lengani D., Simoni D., Kubacki S., Dick E., 2020, Analysis and modelling of the relation between the shear rate and Reynolds stress tensors in transitional boundary layers, International Journal of Heat and Fluid Flow, 84, 108615/1-12, https://doi.org/10.1016/j.ijheatfluidflow.2020.108615.
  13. Marchlewski K., Łaniewski-Wołłk Ł., Kubacki S., 2020, Aerodynamic Shape Optimization of a Gas Turbine Engine Air-Delivery Duct, Journal of Aerospace Engineering, 33 (4), 04020042/1-12, https://ascelibrary.org/doi/10.1061/%28ASCE%29AS.1943-5525.0001157.
  14. Kubacki S., Jonak P., Dick E., 2019, Evaluation of an algebraic model for laminar-to-turbulent transition on secondary flow loss in a low-pressure turbine cascade with an endwall, International Journal of Heat and Fluid Flow, 77, 98-112, https://doi.org/10.1016/j.ijheatfluidflow.2019.03.007.
  15. Simoni D., Lengani D., Dellacasagrande M., Kubacki S., Dick E., 2019, An accurate data base on laminar-to-turbulent transition in variable pressure gradient flows, International Journal of Heat and Fluid Flow, 77, 84-97, https://doi.org/10.1016/j.ijheatfluidflow.2019.02.008.
  16. Jonak P., Borzęcki T., Kubacki S., 2019, Prediction of secondary flow losses in an entrance duct to a low-pressure turbine, Archives of Mechanics, 71, 65–90, DOI: 10.24423/aom.3025, http://am.ippt.pan.pl/am/article/view/v71p65.
  17. Dick E., Kubacki S., 2017, Transition models for turbomachinery boundary layer flows: A review, International Journal of Turbomachinery, Propulsion and Power, 2 (2), 1-45.
  18. Kubacki S., Dick E., 2016, An algebraic intermittency model for bypass, separation-induced and wake-induced transition, International Journal of Heat and Fluid Flow, 62, 344-361.
  19. Kubacki S., Dick E., 2016, An algebraic model for bypass transition in turbomachinery boundary layer flows, International Journal of Heat and Fluid Flow, 58, 68–83. 
  20. Kubacki S., Rokicki J., Dick E., 2016, Simulation of the flow in a ribbed rotating duct with a hybrid k-ω RANS/LES model, Flow Turbulence and Combustion, 97, 45–78.
  21. Kubacki S., Rokicki J., Dick E., 2013, Hybrid RANS/LES computations of plane impinging jets with DES and PANS models, International Journal of Heat and Fluid Flow, 44, 596 - 609.
  22. Kubacki S., Rokicki J., Dick E., 2013, Predictions of round impinging jet heat transfer with two k-ω hybrid RANS/LES models, 2013, International Journal of Numerical Methods for Heat and Fluid Flow, 23 (6), 1023-1048.
  23. Kubacki S., Rokicki J., Dick E., Degroote J., Vierendeels J., 2013, Hybrid RANS/LES of plane jets impinging on a flat plate at small nozzle-plate distances, Archives of Mechanics, 65, 2, 143-166.
  24. Kubacki S., Rokicki J., Dick E., 2011, Hybrid RANS/LES computation of plane impinging jet flow, Archives of Mechanics, 63 (2) 117-136.
  25. Kubacki S., Dick E., 2011, Hybrid RANS/LES of flow and heat transfer in round impinging jets, International Journal of Heat and Fluid Flow, 32, 631-651.
  26. Kubacki S., Dick E., 2011, Simulation of impinging jet mass transfer at high Schmidt number with algebraic models, Progress in Computational Fluid Dynamics, 11 (1) 30-41.
  27. Kubacki S., Dick E., 2010, Simulation of plane impinging jets with k-ω based hybrid RANS/LES models, International Journal of Heat and Fluid Flow, 31, 862-878.
  28. Kubacki S., Dick E., 2010, Convective heat transfer predictions in an axisymmetric jet impinging onto a flat plate using an improved k-ω model, Journal of Computational and Applied Mathematics, 234 (7) 2327-2335.
  29. Kubacki S., Dick E., 2009, Convective heat transfer prediction for an axisymmetric jet impinging onto a flat plate with an improved k-ω model, International Journal of Numerical Methods for Heat and Fluid Flow, 19 (8) 960-981.
  30. Aerts T., De Graeve I., Nelissen G., Deconinck J., Kubacki S., Dick E., Terryn H., 2009. Experimental study and modelling of anodizing of aluminium in wall-jet electrode set-up in laminar and turbulent regime, Corrosion Science, 51 (7) 1482-1489.
  31. Kubacki S., Lodefier K., Zarzycki R., Elsner W., Dick E., 2009, Further development of a dynamic intermittency model for wake-induced transition, Flow Turbulence and Combustion, 83 (4) 539-568.
  32. Bogusławski A., Kubacki S., 2009, An influence matrix technique for multi–domain solution of the Navier-Stokes equations in vorticity-streamfunction formulation, Journal of Theoretical and Applied Mechanics, 47 (1) 17-40.
  33. Piotrowski W., Lodefier K., Kubacki S., Elsner W., Dick E., 2008, Comparison of two unsteady intermittency models for bypass transition prediction on a turbine blade profile, Flow Turbulence and Combustion, 81 (3) 369-394.
  34. Kubacki S., Bogusławski A., 2008, Dirichlet/Dirichlet and Dirichlet/Dirichlet-Neumann/Neumann nonoverlapping iterative domain decomposition methods, TASK Quarterly, 12, 1, 85-104.
  35. Kubacki S., Bogusławski A., 2006, Application of the influence matrix method for multidomain solution of the Navier-Stokes equations, Chemical and Process Engineering, 27 (3) 1015-1029.

Rozdziały w książkach:

  1. Marchlewski K., Łaniewski-Wołłk Ł, Kubacki S., Szumbarski J., 2018, Robust Optimization with Gaussian Process Models, in: Uncertainty Management for Robust Industrial Design in Aeronautics, Hirsch Ch., Wunsch D., Szumbarski J., Łaniewski-Wołłk Ł., Pons-Prats J. (Eds.), vol. 140, Springer, ISBN 978-3-319-77766-5, pp. 479-494.
  2. Dick E., Kubacki S., Lodefier K., Elsner W., 2012, Intermittency modelling of transitional boundary layer flows on steam and gas turbine blades. Chapter 6 in M.A.R. Sadiq Al-Baghdadi Ed., Engineering Applications of Computational Fluid Dynamics, Vol. 2., International Energy and Environment Foundation, ISBN 978-1478329350, 173-216.
  3. Dick E., Kubacki S., 2010, Simulation of plane and round impinging jet heat and mass transfer with a RANS k-ω model for electrochemical applications.  Deconinck J., Hubin A., van Beeck J.P.A.J. (Eds.), Transport Phenomena in Electrochemical Processes, VKI Lecture Series, Von Karman Institute for Fluid Dynamics, ISBN-13 978-2-930389-99-0 (22 p).
  4. Dick E., Kubacki S., 2010, Simulation of plane and round impinging jet heat transfer with k-ω based hybrid RANS/LES models for electrochemical application.  Deconinck J., Hubin A., van Beeck J.P.A.J. (Eds.), Transport Phenomena in Electrochemical Processes, VKI Lecture Series, Von Karman Institute for Fluid Dynamics, ISBN-13 978-2-930389-99-0 (27 p).
  5. Kubacki S., Dick E., 2010, Hybrid RANS/LES of Plane Impinging Jets with k-ω Based Models, in: Progress in Hybrid RANS-LES Modelling, Peng S-H., Doerffer P., Haase W. (Eds.), Notes on Numerical Fluid Mechanics and Multidisciplinary Design, no. 111, Springer Berlin Heidelberg, ISBN 978-3-642-14167-6, 978-3-642-14168-3, pp. 261-270.

Inne informacje

Zakończone projekty badawcze (finansowane ze środków zewnętrznych):

  1. Projekt badawczy finansowany przez Narodowe Centrum Nauki (NCN), Development of a new laminar-to-turbulent transition model for boundary layer flow incorporating the effects of instabilities triggered by acoustic waves, 2019-2023, Grant Nr 2018/31/B/ST8/01717, (konsorcjum Politechnika Warszawska i Politechnika Częstochowska, kierownik projektu).
  2. Projekt badawczy współfinansowany przez Narodowe Centrum Badan i Rozwoju (NCBiR) i Avio Polska sp. z. oo. w ramach programu INNOLOT, Cooperative Research for Next Generation High Efficiency LP Turbine, 2013-2019 (wykonawca, p.o. kierownika projektu od 2016),
  3. Projekt EU, Efficient Systems and Propulsion form Small Aircrafts (ESPOSA), 2011-2015 (wykonawca),
  4. Projekt EU, Fluid Optimisation Workflows for Highly Effective Automotive Development Processes (SCP7-GA-2008-218626, FlowHead), 2009-2012,
  5. Projekt badawczy finansowany przez Narodowe Centrum Nauki (NCN), DNS, modelling and measurements of a laminar to turbulent flow transition, 2011-2014 (kierownik projektu),
  6. Grant Współczesne techniki modelowania turbulencji i przejscia laminarno-turbulentnego - model hybrydowy RANS/LES oraz model RANS oparty na zmiennych lokalnych w ramach programu badawczego 'Iuventus Plus' projekt finansowany przez Ministerstwo Nauki i Szkolnictwa Wyższego, 2010-2011 (kierownik projektu),
  7. Grant badawczy finansowany przez Uniwersytet w Gandawie, 2010-2011 (wykonawca),
  8. Projekt Experimental Research and Numerical Modelling of Unsteady Complex Flows in Turbomachines, współpraca pomiędzy Politechniką Częstochowską oraz Uniwersytetem w Gandawie (wykonawca),
  9. Belgijski projekt badawczy Novel Multiscale Approach to Transport Phenomena in Electrochemical Processes (IWT, contract: MuTEch SBO 040092), (wykonawca)
  10. Projekt EU, Integrated Lean Low Emission Combustor Design Methodology (FP6-502961 INTELLECT.D.M.), 2004-2008 (wykonawca),
  11. Grant promotorski, Obliczenia równoległe w zastosowaniu metod spektralnych do analizy równan Naviera-Stokesa, KBN, 4T07A 01626, 2004-2006,
  12. Projekt EU, Modelling of Low Emissions Combustors using Large Eddy Simulations (GRD1-2000-25221, MOLECULES), 2001-2004 (wykonawca),
  13. Projekt QNET-CFD, A Thematic Network for Quality and Trust in the Industrial Applications of Computational Fluid Dynamics, 2000-2004 (wykonawca),
  14. Projekt badawczy finansowany przez KBN, Numeryczna symulacja procesów turbulentnego transportu i spalania w wybranych typach przepływów metoda Symulacji Wielkich Wirów (LES-Large Eddy Simulation), 8T10B00919, 2000-2003 (wykonawca).