
WARSAW UNIVERSITY OF TECHNOLOGY

Computer Science IComputer Science I

Lecture 9
2D Arrays

and examples



WARSAW UNIVERSITY OF TECHNOLOGY

Computer Science IComputer Science I

2D arrays
Declaration

Syntax:
type name[size 1][ size 2]

• type - almost any type, pointer, etc.

• name - an identifier

• size1 and size 2 - MUST be known at compilation time

e.g.:
//2x3 ints array of-> 6 ints -> 24B
int tabA [2][3];
//5x3 double array -> 15 doubles -> 120B
double tabB [5][3];

• Continous in memory

• Occupies size 1 x size 2 x sizeof(type) B

• Acces elements with double [], e.g.: tab[i][j]
tabA [0][0] // first row first column
tabA [0][2] // first row third column
tabA [1][2] // second row third column



WARSAW UNIVERSITY OF TECHNOLOGY

Computer Science IComputer Science I

2D arrays
Memory

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

Memory
Location

Address

11

12

13

21

22

23

int tab[2][3];
6x4=24B

2 rows
3 columns

Blocks have 2B
for easier notation

• Indexing is from 0 to size-1

• Storage is row based

• Array is stored row after row

Example:
int tab [2][3];

tab [0][0]=11;
tab [0][1]=12;
tab [0][2]=13;

tab [1][0]=21;
tab [1][1]=22;
tab [1][2]=23;

11 12 13

21 22 23



WARSAW UNIVERSITY OF TECHNOLOGY

Computer Science IComputer Science I

2D arrays
Memory

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

Memory
Location

Address

11

12

13

21

22

23

int tab[2][3];
6x4=24B

2 rows
3 columns

Blocks have 2B
for easier notation

1 Write a program using a 2D
static array.

2 Access elements using [].

3 Print an address of each array
element using &tab[i][j].

4 What is a distance of:
• tab[i][j] and tab[i+1][j]
• tab[i][j] and tab[i][j+1]

5 Can a 2D array be treated as
1D?

6 Consequences?



WARSAW UNIVERSITY OF TECHNOLOGY

Computer Science IComputer Science I

2D arrays
Functions

• Defining a function:
type function_name(array_type tab[][ SIZE2], ...)
{

// Function body
}

• Usage:
array_type tab[SIZE1][SIZE2 ];
...
//Call the function , pass an array as an argument
function_name(tab , ...);

• The second bracket MUST give the size of an array.

• Function is compiled separately

• Changing the second index moves to the next memory block

• Changing the first index moves us to the next row.

• The size of row must be known!

• See previous example!



WARSAW UNIVERSITY OF TECHNOLOGY

Computer Science IComputer Science I

2D arrays
Examples

1 Write a program illustrating workings of a 2D static array

2 Add initialization function

3 Distinguish the maximum size of an array, and the one used by the
program

4 Illustrate how to write functions with 2D arrays

5 Add a function printing a 2D array

6 Add a function coping to a 1D vector the diagonal from a square
matrix

7 Write a function coping a row, column from a 2D array

8 Write a function inserting a row column into a 2D array



WARSAW UNIVERSITY OF TECHNOLOGY

Computer Science IComputer Science I

Dynamic memory allocation

We know how to declare static arrays. We need a method to deal with
situations when the size of an array is unknown at compilation time.

C offers malloc, located in stdlib.h
void* malloc (size_t size);
void* malloc (unsigned int size);

1 Allocates a block of size bytes of memory

2 Returns a pointer to the beginning of that block

3 The content allocated block of memory is not initialized

4 size t is unsigned int

5 For each malloc there needs to be a single free
type * p = (type*) malloc(size);
free(p)

6 After we are done with using the memory



WARSAW UNIVERSITY OF TECHNOLOGY

Computer Science IComputer Science I

Dynamic memory allocation

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

Memory
Location

Address

11

12

13

21

22

23

malloc
returns the
address of

the begining

Blocks have 2B
for easier notation

• Indexing is from 0 to size-1

• Just like the 1D static one

Example:
int *p=(int*) malloc (24);

p[0] = 11;
p[1] = 12;
p[2] = 13;
p[3] = 21;
p[4] = 22;
p[5] = 23;

free(p);



WARSAW UNIVERSITY OF TECHNOLOGY

Computer Science IComputer Science I

Dynamic memory allocation
use sizeof()

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

Memory
Location

Address

11

12

13

21

22

23

malloc
returns the
address of

the begining

Blocks have 2B
for easier notation

• sizeof() gives us the size of type

•

Example:
int *p=(int*) malloc (6* sizeof(int));

p[0] = 11;
p[1] = 12;
p[2] = 13;
p[3] = 21;
p[4] = 22;
p[5] = 23;

free(p);



WARSAW UNIVERSITY OF TECHNOLOGY

Computer Science IComputer Science I

Dynamic memory allocation
With size from keyboard

• Read the size from keyboard

• Allocate memory using malloc()
int n;
scanf("%d", &n);
int *p=(int*) malloc(n*sizeof(int));

p[0] = 11;
p[1] = 12;
p[2] = 13;
p[3] = 21;
p[4] = 22;
p[5] = 23;

free(p);

• Recall the example with reading in array data from a file

• Read the size from file, allocate, read data ...



WARSAW UNIVERSITY OF TECHNOLOGY

Computer Science IComputer Science I

Dynamic memory allocation
Use with functions and compatibility with static arrays

• In the case of 1D arrays it is the same as with static ones

• Example with bubble sorting



WARSAW UNIVERSITY OF TECHNOLOGY

Computer Science IComputer Science I

Dynamic memory allocation
Allocation of 2D arrays is a bit more complicated ...

Which we will find out next week


	2D arrays
	Mamory
	2D arrays and functions

	Dynamic memory allocation

