Answer questions in the spaces provided on the question sheets. All parts of questions 1,2 and 3 MUST be answered to receive any points. Write your name in printed letters. Unreadable or unformatted answers will not be checked!

1. Write a short code snippet (no includes, function definitions, just code) that:

| Declares a static 1D array to store 50 ints, and initial- |
| :--- |
| ize it with zeros: |
| 1 <br> 2 <br> 3 <br> 4 <br> 5 |


| Declares a pointer to a double variable, stores an ad- |
| :--- |
| dress of (previously declared) variable d and changes |
| the value of d using the pointer |
| 1 |
| 2 |
| 3 |
| 4 |


2. Write a short code snippet (no includes, function definitions, just code) that:

3. Write a complete program. The program should open a file data.dat, with the data structure shown, and read in the $(x, y)$ coordinates to 2 , dynamically allocated arrays of appropriate size. Print 10 'th and 15 'th elements.

4. Write a function of an appropriate type that initializes a 1D array of $n$ doubles with the following formula $x[i]=a e^{\frac{1}{i+1}}+\frac{1}{b}$, a and b should be passed as parameters.

| 14 |
| :--- |
| 2 |
| 3 |
| 4 |
| 4 |
| 5 |
| 6 |
| 7 |
| 8 |
| 9 |
| 10 |


5. Write a function of an appropriate type that for a 1D array of $\boldsymbol{n}$ doubles calculates and returns the average value of all the elements. Additionally the function should find the element nearest the average value and provide its value and index. No global variables are allowed.

6. Write a complete program using functions developed in questions 4 and 5 . Do not rewrite the functions, just prototypes. The program should: 1. Open a file of the same structure like Q3. 2. Read data from a file and store it in two dynamic arrays. 3. Initialize one of the arrays with function from Q4, the other should be filled with random numbers. 4. Use function 5 to calculate average values of both arrays. 5. Print indices of the values nearest the average values of both arrays. The program must fit in the box below:


