COMPUTER SCIENCE I

Exercise 9

1. 2. Create a file containing a vector \mathbf{w} and its length in the first line. The file should look in the following way:
N
w1
w2
w3
...
wn
1. Write a program which contains a static array w of length $M A X _N$ and three two-dimensional static arrays A, B and C of sizes [MAX_N x $\left.M A X _M\right]$, $\left[M A X _M\right.$ x $\left.M A X _L\right]$ and $\left[M A X _N x\right.$ $\left.M A X _L\right]$ correspondingly.
2. Read the length N of the vector \mathbf{w} and and check if $M A X_{-} N \geq N$. If the condition is fulfilled, read the vector into the array.
3. Check if $M A X_{-} M \geq N$ and if the condition is satisfied, create the array B which elements are defined by the formula:

$$
B_{i j}=\left\{\begin{array}{l}
1-w_{i} w_{j}, i=j \\
-2 w_{i} w_{j}, i \neq j
\end{array}\right.
$$

5. Write a function which prints an array passed as its argument to the file "mac.txt". Run the function with the array B as the argument.
6. Write two functions:
a) the first one should compute a product of two matrices A and B :

$$
C=A \cdot B, \text { or in another way } C_{i j}=\sum_{k=1}^{M} A_{i k} B_{k j}
$$

b) the second one should compute a transposition of a given matrix.
7. Use both functions from the point 6 and calculate the matrix:

$$
C=B \cdot B^{T}
$$

