Warsaw University of Technology

Faculty of Power and Aeronautical Engineering

CATALOGUE OF COURSES

Undergraduate studies (B.Sc. degree)
Tok 2006

Warsaw 2018
FIELDS OF STUDIES AND SPECIALIZATIONS

The undergraduate studies last 7 semesters and conclude with the Bachelor of Science degree. They are offered in two specializations. Please see the table below:

<table>
<thead>
<tr>
<th>Field of Studies</th>
<th>Specialization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace Engineering</td>
<td>Aerospace Engineering</td>
</tr>
<tr>
<td>Power Engineering</td>
<td>Power Engineering</td>
</tr>
</tbody>
</table>

The program of B.Sc. studies is the same for all specializations during the first two semesters. The studies within a particular specialization can be launched when a sufficient number of students have been admitted by the Dean of the Faculty.

Heads of specializations:
- Aerospace Engineering – prof. Cezary Galiński
- Power Engineering – prof. Tadeusz Skoczkowski

Regulations of Studies

Students must comply with the „Regulations of Studies of Warsaw University of Technology” accepted by the University Senate. Please see the following sections for more details. Dean of the Faculty decides in matters not specified by the Regulations.

Course of studies

From the second semester students must design an individual study plan for next semesters, which includes the obligatory courses, especially the specialization courses that must be repeated, and possibly the courses included in the program for higher semesters of studies.

When designing the individual study plan for the next semester, students must decide on:
- Electives - if included in the programme. There is no separate list of electives. An elective can be any course which is not included in the programme of other fields of studies given in English. Dean of the Faculty approves optional electives, e.g. lectured by the Visiting Professors.
- Division and subject of intermediate projects.
- Division and scope of diploma seminar. The seminar provides knowledge and skills required in diploma project preparation.
Division and subject of diploma project. The division is the same as in case of diploma seminar. Students can also select from a range of foreign language or physical education courses.

Individual study plan for the next semester must be prepared according to the prerequisites given in the catalogue, i.e. courses which must be completed before the beginning of the current course.

After each semester, the student performance is assessed and the registration procedure for the next semester is performed. At the end of the study program all the requirements for graduation must fulfilled.

Registration procedures for each semester

ECTS Credit System

During each course a certain number of ECTS points are earned in accordance with the course significance, difficulty and the student workload required. The total number of credit points that can be earned for all courses in each semester is 30.

Evaluation System

1. At the end of each semester, students obtain one final grade for each course (regardless of the course division into lectures, tutorials and laboratory work).

2. The grading scale starts with a failing grade 2 and consists of five passing grades: 3, 3\(1/2\), 4, 4\(1/2\), 5.

3. In exceptional cases, students may obtain “condition” N final grade, which means that the student performance during the semester is evaluated positively, but the student is not allowed to take the final exam (due to valid reasons). The lecturer defines the procedures in case of “condition” N. This grade obliges the student to complete the course by the end of the following semester the latest, so that he does not need to repeat it and pay extra fee. If the student fails to complete the course during the following semester, the course must be repeated. Consequently, the student is obliged to cover the costs of the course repetition according to University Regulations. There are no credit points for “condition” N.

Requirements for registration for each semester

1. In order to register for the next semester, students are required to have a sufficient number of credit points as given in the table below.
B.Sc. Programme

<table>
<thead>
<tr>
<th>Registration for semester</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of collected credits</td>
<td>22</td>
<td>44</td>
<td>68</td>
<td>98</td>
<td>130</td>
<td>170</td>
</tr>
</tbody>
</table>

2. Students who fail to collect the required number of points are removed from the study programme, with the exception of the last two semesters of studies, for which the student can re-register.

3. Students must repeat the failed course during the next available semester. Courses can be repeated twice. Students who fail to complete the course three times will be removed from the Faculty. Students are obliged to cover the costs of course repetition according to University Regulations.

4. Dean can approve student sick leave or leave of absence. First year students may obtain sick leave only.

5. In some cases, the Dean can grant a student who is on the leave, the right to take certain courses "in advance".

6. Duration of undergraduate studies must not be longer than nine semesters. In case the student is granted the leave, duration of studies is prolonged accordingly.

Requirements for graduation

Requirements for graduating with the B.Sc. degree are as follows:

- Completion of all courses in the study program,
- 4-week internship (in industry)
- Collecting 210 ECTS points including the preparation of B.Sc. thesis
- Writing B.Sc. thesis and passing the final exam.

The final grade for the completed study program is an average of grades received for each course. Failing grades are not included in the average.

\[
\text{Average grade} = \frac{\sum_{i \in Z} g_i \cdot O_i}{\sum_{i \in Z} g_i}
\]

- \(Z\) – number of completed courses,
- \(g_i\) – number of ECTS points allocated to the course,
- \(O_i\) – grade for the course.
Final examinations are held four times a year – in January, March, June and October.

Brief study schedule

Brief study schedule includes information on the course title and the number of hours per semester and week. Information about a course division into lectures, tutorials, laboratory work and projects as well as the number of credit points can be found in a table for each semester. Complete information about courses can be found in the last part of the catalogue on courses contents.

LEGEND for the list of courses (following pages)

In the following section the list of courses is given, divided into suggested sequence during standard semesters of study.

In each semester the standard set of courses gives 30 ECTS points. In the case the required (named and specified) courses do not fill standard 30 ECTS points – then ELECTIVE courses should be taken in the amount summing the semester load to 30 ECTS. Compare remarks on elective courses in the section "Course of Studies".

In the headers of tables the following abbreviations/acronyms are used:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lc</td>
<td>Lecture</td>
</tr>
<tr>
<td>T</td>
<td>Tutorial</td>
</tr>
<tr>
<td>Lb</td>
<td>Laboratory</td>
</tr>
<tr>
<td>P</td>
<td>Project</td>
</tr>
<tr>
<td>S</td>
<td>Seminar</td>
</tr>
</tbody>
</table>
Field of Study Lotnictwo i Kosmonautyka

<table>
<thead>
<tr>
<th>Aerospace engineering</th>
<th>Semester 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td>Semester 3</td>
</tr>
<tr>
<td></td>
<td>Semester 4</td>
</tr>
<tr>
<td></td>
<td>Semester 5</td>
</tr>
<tr>
<td></td>
<td>Semester 6</td>
</tr>
<tr>
<td></td>
<td>Semester 7</td>
</tr>
</tbody>
</table>
List of common courses:

<table>
<thead>
<tr>
<th>No.</th>
<th>Course number</th>
<th>Course name</th>
<th>Lc</th>
<th>T</th>
<th>Lb</th>
<th>P</th>
<th>S</th>
<th>ECTS points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ML.ANW101</td>
<td>Algebra and Geometry</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>ML.ANW102</td>
<td>Calculus 1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>3.</td>
<td>ML.ANW106</td>
<td>Computer Science 1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>ML.ANW105</td>
<td>Engineering Graphics</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>ML.ANW104</td>
<td>Engineering Physics</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>ML.ANW109</td>
<td>Environment Protection</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>ML.ANJGA1</td>
<td>Foreign language 1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>ML.ANW71</td>
<td>Health and Safety Training</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9.</td>
<td>ML.ANW72</td>
<td>Library Training</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.</td>
<td>ML.ANW107</td>
<td>Materials 1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>11.</td>
<td>ML.ANW108</td>
<td>Mechanics 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>ML.ANWF1</td>
<td>Physical Education and Sports 1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13.</td>
<td>ML.ANW103</td>
<td>The Wittgensteins Philosophy_Ethics</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
Field of Study Lotnictwo i Kosmonautyka
Field of Specialization Aerospace engineering
Semester 2

List of common courses:

<table>
<thead>
<tr>
<th>No.</th>
<th>Course number</th>
<th>Course name</th>
<th>Lc</th>
<th>T</th>
<th>Lb</th>
<th>P</th>
<th>S</th>
<th>ECTS points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ML.ANW90</td>
<td>Calculus 2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>ML.ANW114</td>
<td>Computer Science 2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>ML.ANW112</td>
<td>Economics</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>ML.ANW113</td>
<td>Electric Circuits 1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>ML.ANW118</td>
<td>Engineering Graphics - CAD 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>ML.ANJGA2</td>
<td>Foreign language 2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>ML.ANW115</td>
<td>Mechanics II</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>8.</td>
<td>ML.ANW117</td>
<td>Mechanics of Structures 1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>9.</td>
<td>ML.ANW116</td>
<td>Physical Education and Sports 2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10.</td>
<td>ML.ANW116</td>
<td>Thermodynamics 1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>
Field of Study Lotnictwo i Kosmonautyka
Field of Specialization Aerospace engineering
Semester 3

List of common courses:

<table>
<thead>
<tr>
<th>No.</th>
<th>Course number</th>
<th>Course name</th>
<th>Lc</th>
<th>T</th>
<th>Lb</th>
<th>P</th>
<th>S</th>
<th>ECTS points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ML.ANW123</td>
<td>Basics of Automation and Control 1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>ML.ANW91</td>
<td>Calculus 3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>ML.ANW122</td>
<td>Fluid Mechanics 1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>ML.ANJGA3</td>
<td>Foreign language 3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>ML.ANW124</td>
<td>Machine Design 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>ML.ANWF3</td>
<td>Physical Education and Sports 3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

List of specialization courses:

<table>
<thead>
<tr>
<th>No.</th>
<th>Course number</th>
<th>Course name</th>
<th>Lc</th>
<th>T</th>
<th>Lb</th>
<th>P</th>
<th>S</th>
<th>ECTS points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ML.ANK467</td>
<td>Aeronautical Systems 1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>ML.ANK431</td>
<td>Engineering Graphics - CAD 2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>ML.ANK466</td>
<td>Introduction to Aerospace</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>ML.ANK399</td>
<td>Manufacturing Technology 1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>ML.ANK335</td>
<td>Materials in Aerospace Technology</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>ML.ANK427</td>
<td>Mechanics of Structures 2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
Field of Study Lotnictwo i Kosmonautyka
Field of Specialization Aerospace engineering
Semester 4

List of common courses:

<table>
<thead>
<tr>
<th>No.</th>
<th>Course number</th>
<th>Course name</th>
<th>Lc</th>
<th>T</th>
<th>Lb</th>
<th>P</th>
<th>S</th>
<th>ECTS points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ML.ANW135</td>
<td>Electronics 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>ML.ANJGA4</td>
<td>Foreign language 4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>ML.NJAC1</td>
<td>Languages - C1_Exam (English)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>ML.ANW125</td>
<td>Machine Design 2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>ML.ANWF4</td>
<td>Physical Education and Sports 4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

List of specialization courses:

<table>
<thead>
<tr>
<th>No.</th>
<th>Course number</th>
<th>Course name</th>
<th>Lc</th>
<th>T</th>
<th>Lb</th>
<th>P</th>
<th>S</th>
<th>ECTS points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ML.ANK473</td>
<td>Aerodynamics 1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>ML.ANK468</td>
<td>Astronautics</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>ML.ANK316</td>
<td>Electronics 2 (lab)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>ML.ANK436</td>
<td>Integrated CAD/CAM/CAE Systems 1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>ML.ANK471</td>
<td>Integrated Laboratory (AE)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>ML.ANK400</td>
<td>Manufacturing Technology 2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>ML.ANK472</td>
<td>Mechanics of Flight 1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>8.</td>
<td>ML.ANK433</td>
<td>Propulsion Systems 1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>
Field of Study Lotnictwo i Kosmonautyka
Field of Specialization Aerospace engineering
Semester 5

<table>
<thead>
<tr>
<th>No.</th>
<th>Course number</th>
<th>Course name</th>
<th>Lc</th>
<th>T</th>
<th>Lb</th>
<th>P</th>
<th>S</th>
<th>ECTS points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ML.ANK458</td>
<td>Aeronautical Systems 2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>ML.ANK307</td>
<td>Aircraft Design 1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>ML.ANS619</td>
<td>Aircraft Engine Design 1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>ML.ANK359</td>
<td>Chemistry of Combustion</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>ML.ANK365</td>
<td>Machine Design 3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>ML.ANK457</td>
<td>Mechanics of Flight 2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>ML.ANS611</td>
<td>Risk and Reliability in Aviation</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>ML.ANS609</td>
<td>Rotorcraft Aeromechanics</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>9.</td>
<td>ML.ANS630</td>
<td>Spacecraft Design</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Field of Study Lotnictwo i Kosmonautyka
Field of Specialization Aerospace engineering
Semester 6

List of common courses:

<table>
<thead>
<tr>
<th>No.</th>
<th>Course number</th>
<th>Course name</th>
<th>Lc</th>
<th>T</th>
<th>Lb</th>
<th>P</th>
<th>S</th>
<th>ECTS points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ML.ANW127</td>
<td>Intermediate Engineering Project</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>2.</td>
<td>ML.ANW126</td>
<td>Physics 1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

List of specialization courses:

<table>
<thead>
<tr>
<th>No.</th>
<th>Course number</th>
<th>Course name</th>
<th>Lc</th>
<th>T</th>
<th>Lb</th>
<th>P</th>
<th>S</th>
<th>ECTS points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ML.ANK308</td>
<td>Aircraft Design 2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>ML.ANS631</td>
<td>Aircraft Engine Design 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>ML.ANK315</td>
<td>Aircraft Maintenance</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>ML.ECENG02</td>
<td>Elective Courses Engineering</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>ML.ANK342</td>
<td>Finite Element Method 1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>ML.ANK368</td>
<td>Machine Design 6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>ML.ANS614</td>
<td>Simulation of Aeronautical Systems</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>ML.ANK401</td>
<td>Structure and Assembling of Airframe</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
Field of Study Lotnictwo i Kosmonautyka
Field of Specialization Aerospace engineering
Semester 7

List of common courses:

<table>
<thead>
<tr>
<th>No.</th>
<th>Course number</th>
<th>Course name</th>
<th>Lc</th>
<th>T</th>
<th>Lb</th>
<th>P</th>
<th>S</th>
<th>ECTS points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ML.ANW128</td>
<td>Engineering Diploma Seminar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>ML.ANW136</td>
<td>Engineering Diploma Thesis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>

List of specialization courses:

<table>
<thead>
<tr>
<th>No.</th>
<th>Course number</th>
<th>Course name</th>
<th>Lc</th>
<th>T</th>
<th>Lb</th>
<th>P</th>
<th>S</th>
<th>ECTS points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ML.ANS613</td>
<td>Aeronautical Regulations</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>ML.ANS608</td>
<td>Aircraft Engines Maintenance</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>ML.ANK348</td>
<td>Computational Fluid Dynamics</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>ML.ANK479</td>
<td>Finite Element Method 2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>ML.ANS627</td>
<td>Simulators</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>ML.ANK459</td>
<td>Vibrations and Aeroelasticity</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
Course name: Aerodynamics 1

Course name in other language:

Short name: AEROA1

Course number: ML.ANK473

Course language: English

Responsible for the course: dr inż. Jerzy Majewski

ECTS: 2

Number of hours: [Lc, T, Lb, P, S,]

Course level: Intermediate

weekly: [2, 0, 0, 0, 0,]

Form of grading: Exam

by semester: [30, 0, 0, 0, 0,]

Field of Study: Lotnictwo i Kosmonautyka

Field of Specialization: Aerospace engineering

Study level: undergraduate, full time

Recommended semester: 4

Mechanika i Budowa

Computer Aided Engineering_specjalność

Study level: undergraduate, full time

Recommended semester: 6

Contents - short:

Good knowledge of the fundamental concepts and principles of the Aerodynamics of airplane.

Bibliography:

Course results:

Grading criteria:

Detailed contents:

4. Influence of compressibility on aerodynamic characteristics. Prandtl-Glauert correction.
 Supersonic flow over airfoil. Wave drag in supersonic flow. Supersonic airfoil.

Additional remarks (by course staff):
Sylabus

Course name: Aeronautical Regulations
Course name in other language:
Short name: AREG
Course number: ML.ANS613
Course language: English
Responsible for the course: mgr Wiesław Jedynak
ECTS: 1
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate
weekly: [1, 0, 0, 0, 0,]
Form of grading: Continuous assessment
by semester: [15, 0, 0, 0, 0,]
Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: undergraduate, full time
Recommended semester: 7

Contents - short:
Knowledge regarding certification, rules of maintenance management as well as continued airworthiness of aircraft according to ICAO and EASA standards and regulations. Preparing of students as quality and continuing airworthiness managers.

Bibliography:
2. COMMISSION REGULATION (EC) No 1702/2003 of 24 September 2003 laying down implementing rules for the airworthiness and environmental certification of aircraft and related products, parts and appliances, as well as for the certification of design and production.

Grading criteria:
Exam scores, home work

Detailed contents:
Maintenance checks and inspections, Master Minimum Equipment Lists, Minimum Equipment List, Dispatch Deviation Lists, Airworthiness Directives, Service Bulletins, manufacturers service information; Modifications and repairs; Maintenance documentation: maintenance manuals, structural repair manual, illustrated parts catalogue, etc.; Continuing airworthiness: test flights, ETOPS, maintenance and dispatch requirements, All Weather Operations, Category 2/3 operations and minimum equipment requirements.
Sylabus

Course name: Aeronautical Systems 1
Course name in other language: ASYS1
Short name: ASYS1
Course number: ML.ANK467
Course language: English
Responsible for the course: dr inż. Maciej Zasuwa
ECTS: 3
Number of hours: \[Lc, T, Lb, P, S, \]
Course level: Intermediate
Form of grading: Exam
Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: undergraduate, full time
Recommended semester: 3

Contents - short:

the presentation of basics of aeronautical systems: principles of operation and applications

Bibliography:

1. Grewal, Mohinder S., Global positioning systems, inertial navigation, and integration, 2001

Course results:

After completing the course students will be familiar with principles of operation and applications of main aeronautical systems.

Grading criteria:

2 tests in semester in writing and final oral exam

Detailed contents:

Sylabus

Course name: Aeronautical Systems 2
Course name in other language: ASYS2
Short name: ML.ANK458
Course language: English
Responsible for the course: prof. dr hab. inż. Janusz Narkiewicz
ECTS: 3
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate
weekly: [1, 0, 1, 0, 0,]
Form of grading: Exam
by semester: [15, 0, 15, 0, 0,]

Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: undergraduate, full time
Recommended semester: 5

Contents - short:
The presentation of basics of aeronautical systems: principles of operation and applications

Bibliography:
1) Grewal, Mohinder S., Global positioning systems, inertial navigation, and integration, 2001
5) Spitzer, Cary R. Red., „The avionics handbook“, 2001

Course results:
After completing the course the students will be familiar principles of operation and applications of selected aeronautical systems..

Grading criteria:
60% continuous assessment based on laboratory work, 40% on theory presented during lectures. 1 test at the end of lectures, all laboratory exercises completed (report and test).
Practical work: Measurements, data acquisition and processing.

Detailed contents:
Laboratory: The familiarization with principles of operation of elements of pneumatic and hydraulic, systems, magnetic and inertial sensors, IMU, electromagnetic actuations.
Sylabus

Course name: Aircraft Design 1
Course name in other language: ADES1
Short name: ML.ANK307
Course number: MŁ.ANK307
Course language: English
Responsible for the course: prof. dr hab. inż. Cezary Galiński
ECTS: 4
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate
weekly: [2, 0, 0, 1, 0,]
Form of grading: Continuous assessment
by semester: [30, 0, 0, 15, 0,]
Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: undergraduate, full time
Recommended semester: 5

Recommended prerequisites:
Aerodynamics 1 (ML.ANK473), Mechanics of Flight 1 (ML.ANK472)

Contents - short:
To learn about creating the airplane concept

Bibliography:
1) Book 1 Raymer, Daniel P. “Aircraft design”
2) Book 2 Corke, Thomas C. „Design of Aircraft”
3) Book 3 Roskam, Jan. „Airplane design”
Further Readings:
5) - Book 3 Roskam, Jan. „Airplane design”
- will be provided by lecturer

Course results:
After completing his course the students will be able to specify technical requirements, analyse costs and weights, create initial sketches of the airplane and modify design parameters to achieve desired flight performances.

Grading criteria:
50% continuous assesment based on the project work, 50% colloquium

Practical work:
Guided Project, where each students will design his own airplane

Detailed contents:

Additional remarks (by course staff):
Sylabus

Course name: Aircraft Design 2
Course name in other language: ADES2
Short name: ML.ANK308
Course language: English
Responsible for the course: prof. dr hab. inż. Cezary Galiński

ECTS: 4
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate
weekly: [1, 0, 0, 2, 0,]
Form of grading: Continuous assessment
by semester: [15, 0, 0, 30, 0,]

Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: undergraduate, full time
Recommended semester: 6

Recommended prerequisites:
Aerodynamics 1 (ML.ANK473), Aircraft Design 1 (ML.ANK307), Manufacturing Technology 1 (ML.ANK399), Materials in Aerospace Technology (ML.ANK335), Mechanics of Flight 1 (ML.ANK472), Mechanics of Flight 2 (ML.ANK457)

Contents - short:
To learn about developing the airplane concept

Bibliography:
1) Book 1 Niu, Chunyun. „Airframe structural design”
2) Book 2 Howe, Denis. „Aircraft loading and structural layout”
Further Readings:
2. will be provided by lecturer

Course results:
After completing his course the students will be able to manipulate with certain design parameters to achieve desired handling qualities, analyse loads and create the airframe concept.

Grading criteria:
50% continuous assessment based on project work, 50% colloquium
Practical work:
Guided Project, where each students will design his own airplane

Detailed contents:
Loads and handling qualities. Types of structures applicable in aircraft design. Wing and empennages components and their structures. Fuselage components and their structures. Simplified methods of
strength calculations. Connections between fuselage, wing and empennages. Mechanical control systems.

Additional remarks (by course staff):
Students shall continue their projects from Aircraft Design 1
Sylabus

Course name: Aircraft Engine Design 1
Course name in other language: AEDES1
Short name: ML.ANS619
Course language: English
Responsible for the course: dr inż. Maciej Chmielewski
ECTS: 3
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate
weekly: [2, 0, 0, 0, 0,]
Form of grading: Continuous assessment
by semester: [30, 0, 0, 0, 0,]
Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: undergraduate, full
Recommended semester: 5

Recommended prerequisites:
Lotnicze silniki turbinowe (ML.NS607), Zespoły napędowe I (ML.NK433)

Contents - short:
Acquainting students with construction, operation, and application of aircraft engines; the selection and rational designing and calculation techniques for parts and units of aircraft engines

Bibliography:
1) J. Mattingly „Aircraft Engine Design”
2) Serie Napędy Lotnicze Wydawnictw Komunikacji i Łączności
Further Readings:
- Mattingly “Elements of Propulsion”
- Flight International, Aviation Week and Space Technology

Course results:
After completing his course the students will be able to specify and implement methods of design of aircraft engines and its elements.

Grading criteria:
100 % The subject is completed on the basis of the final written tests

Detailed contents:
Turbine aviation engines: scope of using, design schemas, overview of units, aero thermodynamics calculations techniques. Short overview of basic design problems, overview basic responsibilities of control, diagnostic and monitoring unit.
Sylabus

Course name: Aircraft Engine Design 2
Course name in other language: AEDES2
Short name: AEDES2
Course number: ML.ANS631
Course language: English
Responsible for the course: dr inż. Paweł Oleszczak

ECTS: 2
Number of hours: [Lc, T, Lb, P, S,]

Course level: Intermediate
weekly: [0, 0, 0, 2, 0,]

Form of grading: Continuous assessment
by semester: [0, 0, 0, 30, 0,]

Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: undergraduate, full time
Recommended semester: 6

Recommended prerequisites:
Aircraft Engine Design 1 (ML.ANS619)

Contents - short:
Practical training based on the course “Design of Aircraft Engines I”

Bibliography:
1) Mattingly “Aircraft Engine Design”
2) Documentation on http://

Further Readings:
- Mattingly “Elements of Propulsion”
- Will be provided by lecturer

Course results:
After completing his course the students will be able to specify and implement methods of design of aircraft engines and its elements

Grading criteria:
- e.g., 100% assessment of the project
- Practical work: e.g., Project classes where students learn application of modern design tools in aircraft engine design

Detailed contents:
Guided, individual or group project of aircraft engines or its elements
Sylabus

Course name: Aircraft Engines Maintenance
Course name in other language: AEM
Short name: ML.ANS608
Course language: English
Responsible for the course: dr inż. Mirosław Muszyński
ECTS: 2
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate weekly: [2, 0, 0, 0, 0,]
Form of grading: Continuous assessment by semester: [30, 0, 0, 0, 0,]

Field of Study: Lotnictwo i Kosmonautyka Aerospace engineering
Field of Specialization: undergraduate, full time
Study level: Recommended semester:

Contents - short:
To teach students about the basic principles of aircraft engines maintenance systems designing and implementing

Bibliography:
1) Boliński Benedykt, „Eksploatacja silników turbinowych”, Wydawnictwo Komunikacji i Łączności, Warszawa 1981
3) Documentation on http://

Further Readings:
- Krzysztof Buczko (s.d.), Maintenance and technical logistics, Warsaw, Polish Airlines LOT.
- will be provided by lecturer

Course results:
As a result of subject completion a student acquires knowledge in: basic aircraft engines maintenance systems, typical damages of aircraft engine parts and methods of engine testing.

Grading criteria:
The subject is completed on the basis of the final written tests – 100%

Detailed contents:
Aircraft engines maintenance systems, maintenance limits of aircraft engines, planning of aircraft engines overhauls, tasks of maintenance organizations, types of services, maintenance activities on an aircraft engines, ground testing of engine, typical damages of aircraft engine parts, methods of engine testing, the engine monitoring on the ground and in the flight, maintenance safety problems, maintenance documents and manufacture requirements
Additional remarks (by course staff):
As the subject is of interdisciplinary character and is not based on a particular text book, students participation in lectures is highly recommended.
Sylabus

Course name: Aircraft Maintenance
Course name in other language: AIRM
Short name: ML.ANK315
Course language: English
Responsible for the course: dr inż. Kamila Kustroń
ECTS: 2
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate
weekly: [2, 0, 0, 0, 0,]
Form of grading: Continuous assessment
by semester: [30, 0, 0, 0, 0,]

Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: undergraduate, full time
Recommended semester: 6

Contents - short:

Bibliography:
Croes M, Watkins W., Delp F.: Aircraft Maintenance and Repair.
2010 maintenance Library, Publisher: Aircraft Technical Book Company. Edition 2010 (printable CD)
www.aviationtoday.com/am/, www.easa.eu.int/

Course results:
After completing this course the students will have skills to improve maintenance from safety and cost-effectiveness points of view

Grading criteria:
60% assessment of tutor marked assignment and 40% assessment of project (in presentation form)

Additional remarks (by course staff):
http://www.meil.pw.edu.pl/add/ADD/Teaching/Subjects/Aircraft-Maintenance
Sylabus

Course name: Algebra and Geometry
Course name in other language: Algebra z geometrią
Short name: ALG
Course number: ML.ANW101
Course language: English
Responsible for the course: dr Ewa Lewińska
ECTS: 4
Number of hours:
\[\text{Lc}, \text{T}, \text{Lb}, \text{P}, \text{S}, \]
Course level: Intermediate
Form of grading: Exam
Field of Study: Energetyka
Field of Specialization: undergraduate, full time
Study level: Recommended semester: 1
Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: undergraduate, full time
Study level: Recommended semester: 1
Field of Study: Mechanical Engineering
Field of Specialization: undergraduate, full time
Study level: Recommended semester: 1
Field of Study: Mechanika i Budowa
Field of Specialization: undergraduate, full time
Study level: Recommended semester: 1
Field of Study: Maszyn
Field of Specialization:
Study level:

Contents - short:

- to get students familiar with basic concepts of linear algebra and with some elements of 3-d analytic geometry; to introduce fundamental abstract definitions of linear spaces, algebraic bases, linear mappings and to reinterpret earlier material from this abstract point of view.

Bibliography:

- Anton H., Rorres Ch.-Elementary Linear Algebra, John Wiley and Sons 2010,
also
- Lay D.C.- Linear Algebra and its Applications, Addison-Wesley 2003,

Course results:

After completing the course students will know basic concepts of linear algebra and 3-d analytic geometry. They will also see them in the deeper abstract setting of linear spaces and linear mappings. Thus they will be prepared for other mathematical courses where some algebraic background is required.

Grading criteria:

50% at a mid-semester class test, 50% at an exam, if the class test is failed, then 100% at an exam.

Detailed contents:

1. Complex Numbers.
2. Polynomials.
- Factorization of Real Polynomials.
3. Matrices and Determinants.
4. Inverse of a Matrix.
5. Systems of Linear Equations.
- Definition of a Rank of a Matrix and Operations which do not Change a Rank. The Kronecker-Capelli Theorem (the Consistency Theorem).
8. Linear Spaces. Linear Operators.
- Definition of a Linear Space and Examples. Linear Subspaces and Examples. Linear Combinations, Linear Independence and Linear Dependence of Vectors. Algebraic Basis and Dimension of a Linear Space. Examples.
- Definition of a Linear Mapping, its Kernel and Image. General Linear Equations: a Relation between Solutions of Nonhomogeneous and Homogeneous Equations and Illustration of this Relation for Linear Algebraic Systems and Linear Differential Equations.

Additional remarks (by course staff):
Sylabus

Course name: Astronautics
Course name in other language:
Short name: ANAUT
Course number: ML.ANK468
Course language: English
Responsible for the course: prof. dr hab. inż. Piotr Wolański

ECTS: 4
Course level: Intermediate
Form of grading: Continuous assessment

Number of hours: [Lc, T, Lb, P, S,]
weekly: [2, 0, 0, 0, 0,]
by semester: [30, 0, 0, 0, 0,]

Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: undergraduate, full time
Recommended semester: 4

Recommended prerequisites:
Mechanika I (ML.NW108), Termodynamika (ML.ZNK414)

Contents - short:
Learn basics of rocket design, theory of space flights, types of satellites and spacecraft as well as with benefits from space exploration

Bibliography:
Written materials on the Department’s Web site.

Course results:
Calculation of simple orbit parameters, basic estimation of parameters of rockets, determining of features and requirements for space missions

Grading criteria:
Two written tests are necessary to pass to get the credit

Detailed contents:
Design and rocket’s flight; Types of rockers and their applications; Ciołkovski’s formula of space flight; Single and multistage rockets; contemporary rockets; Satellites and spacecrafts; Manned spacecrafts; Reentry problem; Exploration of planets; Benefits from space exploration; future direction of Space Exploration
Sylabus

Course name:
Basics of Automation and Control 1

Course name in other language:

Short name:
BAC1

Course number:
ML.ANW123

Course language:
English

Responsible for the course:
dr inż. Paweł Malczyk

ECTS:
4

Number of hours:

<table>
<thead>
<tr>
<th>Lc</th>
<th>T</th>
<th>Lb</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
</table>

Course level:
Intermediate

Form of grading:
Continuous assessment

by semester:

| 30 | 15 | 0 | 0 | 0 |

Field of Study:

<table>
<thead>
<tr>
<th>Field of Specialization</th>
<th>Study level</th>
<th>Recommended semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energetyka</td>
<td>undergraduate, full time</td>
<td>3</td>
</tr>
<tr>
<td>Lotnictwo i Kosmonautyka</td>
<td>undergraduate, full time</td>
<td>3</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>undergraduate, full time</td>
<td>3</td>
</tr>
<tr>
<td>Mechanika i Budowa</td>
<td>undergraduate, full time</td>
<td>3</td>
</tr>
</tbody>
</table>

Recommended prerequisites:
Calculus 1 (ML.ANW102), Calculus 2 (ML.ANW90)

Contents - short:

Bibliography:
[1] Ogata Katsuhiko: Modern Control Engineering, Prentice Hall;
[2] lecture notes/ materials provided by lecturer

Course results:
The objective of the course is to gain the following abilities:
- ability to transform the functions using Laplace transform,
- ability to describe the control system in Laplace domain,
- ability to create and simplify the block diagrams of controled objects,
- ability to evaluate the typical system responses for standard inputs,
- ability to apply basic stability criteria,
- ability to describe and analyse the control system in time and frequency domains.

Grading criteria:

100% continuous assessment.
2 classworks during semester + individual activity and short tests assessment.

Detailed contents:

1) Basic introduction to the concept of Control Systems.
2) Definition and interpretation of terms: CONTROL SYSTEM, FEEDBACK CONTROL, STABILITY of the system.
3) Introduction and application of Laplace Transform as analysis and design tool for linear dynamical systems.
4) Transfer function definition.
5) Block diagram representation of physical systems.
7) Introduction of poles and zeros concept, dominant poles. Characteristic equation, steady state error, system types.
8) Basic principles of feedback control: PID controller.
9) Stability analyses, Routh-Hurwitz method.
10) Principles of frequency domain analysis; concept of frequency response, Bode plots, Nyquist plots and Nyquist stability.

Additional remarks (by course staff):
Sylabus

Course name: Calculus 1
Course name in other language: CALC1
Short name: CALC1
Course number: ML.ANW102
Course language: English
Responsible for the course: prof. dr hab. inż. Andrzej Fryszkowski

ECTS: 7
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate
weekly: [2, 3, 0, 0, 0,]
Form of grading: Exam
by semester: [30, 45, 0, 0, 0,]

Field of Study: Energetyka
Field of Specialization: undergraduate, full time
Study level: Recommended semester:

Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: undergraduate, full time
Study level: Recommended semester:

Field of Study: Mechanical Engineering
Field of Specialization: undergraduate, full time
Study level: Recommended semester:

Field of Study: Mechanika i Budowa
Field of Specialization: undergraduate, full time
Study level: Recommended semester:

Contents - short:
1. to convey and reinforce the knowledge on real number sequences, functions of one variable, the constant e, one-variable differential and integral calculus, definite and improper integrals, and their application,
2. to acquire thorough understanding of basic concepts and computational processes, and to master skills of using them,
3. to acquire the skill of correct mathematical reasoning and inference.

Bibliography:
1. Thomas “Calculus”
2. Robert A. Adams, Calculus. A complete course
3. Thomas G. Finney: Calculus, ed. Addison-Wesley

Course results:
After completing his course the students will be able to:
1. establish the convergence of sequences and evaluate limits of basic types of sequences;
2. establish the limits of functions and known basic types of functions;
3. evaluate derivatives of elementary functions, know basic rules of differentiation and apply derivatives in evaluations approximate values of expressions, tangent lines, finding the limits of undetermined expressions, finding local extrema of a function and drawing it’s graph;
4. calculate the indefinite integrals of elementary functions;
5. know basic properties of definite integrals (proper and improper), methods of evaluations and implement definite integrals in to evaluation computing areas of planar figures, arc length of the curves, surface areas, volumes of revolved solids;
6. know basic properties of functions of two and three variables;
7. evaluate partial derivatives of arbitrary order and write down the Taylor expansion;
8. find local extrema of functions of two and three variables;
9. examine local extrema of implicit functions.

Grading criteria:
50% continuous assessment based on laboratory work and tests, 50% written final exam

Detailed contents:
4. Function increment. Definition of the derivative of a function at a given point and its geometric interpretation. Derivatives of some common functions. The derivative of a sum, a product and a quotient of functions. The derivative of a composition. Tangent and normal lines at a point to a curve f(x).
7. Derivatives of higher order with the use to identify extrema. Inflection points. Concave and convex functions. Necessary and sufficient conditions for inflection points. Examining the function and plotting its graph.
8. Indefinite integral - definition; antiderivative; integral of some common functions; properties. Techniques of integration.
10. Definite integrals: definition and geometrical interpretation. Improper integrals of the first and the second kind. Applications of integrals; computing areas of planar figures, arc length of the curves, surface areas, volumes of revolved solids.
12. Gradient of a function at a point. Higher order partial derivatives. Taylor formula with the second and higher order.
Sylabus

Course name:
Calculus 2

Course name in other language:
CALC2

Short name:
CALC2

Course number:
ML.ANW90

Course language:
English

Responsible for the course:
prof. dr hab. inż. Andrzej Fryszkowski

ECTS:
5

Number of hours:
[Lc, T, Lb, P, S,]

Course level:
Intermediate

Weekly:
[2, 2, 0, 0, 0,]

Form of grading:
Exam

By semester:
[30, 30, 0, 0, 0,]

Field of Study:

<table>
<thead>
<tr>
<th>Field of Study</th>
<th>Field of Specialization</th>
<th>Study level</th>
<th>Recommended semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energetyka</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>2</td>
</tr>
<tr>
<td>Lotnictwo i Kosmonautyka</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>2</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>2</td>
</tr>
<tr>
<td>Mechanika i Budowa</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>2</td>
</tr>
<tr>
<td>Maszyn</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>2</td>
</tr>
</tbody>
</table>

Contents - short:

to convey and reinforce the knowledge on definite integrals (proper and improper) and their applications, series (numeric and functional), functions of many variables (sets, limits and continuity, multivariable calculus), ordinary differential equations, Frenet trihedron, line and surface integrals, Green, Stokes and Gauss Theorems.

2. to acquire thorough understanding of basic concepts and computational processes and to master skills of using them (labs) and to master the skill of correct mathematical reasoning and inference.

Bibliography:

1. Thomas “Calculus”
2. Robert A. Adams, Calculus. A complete course
3. Thomas G. Finney: Calculus, ed. Addison-Wesley

Course results:

After completing his course the students will be able to:

1. solve basic differential equations of 1st and higher order.
2. Implement differential equations to some practical problems in mechanics, biology etc.;
3. Evaluate double and triple integrals on bounded and unbounded regions.
4. Apply double and triple integrals in calculations of volume, area of surfaces, area of planar regions, moments of inerties and centers of the mass.
5. Know line integrals and basic applications of them.
Grading criteria:
50% continuous assessment based on laboratory work and tests, 50% written final exam

Detailed contents:
2. Solving nonhomogeneous linear differential equations by the method of integrating factor and the method of variation of a parameter. Linear equations of the higher order. General and particular solutions. Initial value problems. Linear equation of the second order transformable to equation of the first order.
3. Method of trial functions for nonhomogenous equation of the m-th order with constant coefficients.
Sylabus

Course name: Calculus 3
Course name in other language:
Short name: CALC3
Course number: ML.ANW91
Course language: English
Responsible for the course: dr Iwona Wróbel
ECTS: 3
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate
Number of weekly hours: [1, 2, 0, 0, 0,]
Form of grading: Exam
Number of hours by semester: [15, 30, 0, 0, 0,]

Field of Study:
Field of Specialization:
Study level: Recommended semester:
Energetyka
- undergraduate, full time
- 3
Lotnictwo i Kosmonautyka
- undergraduate, full time
- 3
Mechanical Engineering
- undergraduate, full time
- 3
Mechanika i Budowa
- undergraduate, full time
- 3
Maszyny
- undergraduate, full time
- 3

Contents - short:
1. to convey and reinforce the knowledge on real number sequences, functions of one variable, the constant e, one-variable differential and integral calculus, definite and improper integrals, and their application,
2. to acquire thorough understanding of basic concepts and computational processes, and to master skills of using them,
3. to acquire the skill of correct mathematical reasoning and inference.

Bibliography:
1. Thomas “Calculus”
2. Robert A. Adams, Calculus. A complete course
3. Thomas G. Finney: Calculus, ed. Addison-Wesley

Course results:
After completing his course the students will be able to:
1. Evaluate surface integrals.
2. Implement and Gauss Theorems to vector field calculus.
3. Establish the convergence of number series.
4. Find radius and area of convergence of power series, expand the basic elementary functions into power series.
5. Apply power series in evaluation of number series.
6. Know trigonometric series and basic applications of them.
Grading criteria:
50% continuous assessment based on laboratory work and tests, 50% written final exam

Detailed contents:
1. Non-oriented surface integrals and their applications
2. Oriented surface integrals.
Sylabus

Course name: Chemistry of Combustion
Course name in other language:
Short name: CHOC
Course number: ML.ANK359
Course language: English
Responsible for the course: prof. dr hab. inż. Rudolf Klemens

ECTS: 3
Number of hours: [Lc, T, Lb, P, S,]
Course level: Advanced
weekly: [1, 1, 0, 0, 0,]
Form of grading: Continuous assessment
by semester: [15, 15, 0, 0, 0,]

Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: undergraduate, full time
Recommended semester: 5

Mechanika i Budowa
Field of Specialization: Computer Aided Engineering_specjalność
Study level: undergraduate, full time
Recommended semester: 6

Recommended prerequisites:
Fluid Mechanics 1 (ML.ANW122), Thermodynamics 1 (ML.ANW116)

Contents - short:
Lectures on: basic properties of fuels and combustible mixtures; mechanisms of combustion and flame propagation including thermal dissociation; methods of limitation of toxic combustion products emission in engines

Bibliography:
2) J. H.S. Lee “The detonation phenomenon”, Cambridge University Press, 2008;

Course results:
Completion of the course results in the knowledge in the domain of: fuel properties; mechanism of ignition and flame propagation; high temperature combustion; low emission combustion.

Grading criteria:
The subject is completed on the basis of the written examination.

Detailed contents:
Basic properties of fuels and combustible mixtures; fundamentals of chemical kinetics; thermal and chain theory of self-ignition; diffusion combustion-laminar and turbulent; kinetic combustion-laminar
and turbulent, kinetic-diffusion combustion-laminar and turbulent; flame stabilization; mechanism of fuel droplets combustion, thermal dissociation, transition from deflagration to detonation, detonation combustion; dynamics of explosion development and suppression; toxic properties of combustion products

Additional remarks (by course staff):
As the subject is of an interdisciplinary character and is not based on a particular text book, students participation in lectures is highly recommended. The students absent from the lectures usually find it later difficult to comprehend courses in physical-chemical phenomena presented during the lectures and definitely attain poorer results at subject completion.
Sylabus

Course name: Computational Fluid Dynamics
Course name in other language:
Short name: CFD
Course number: ML.ANK348
Course language: English
Responsible for the course: prof. dr hab. inż. Jacek Rokicki

ECTS: 3
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate
weekly: [2, 0, 1, 0, 0,]
Form of grading: Exam
by semester: [30, 0, 15, 0, 0,]

Field of Study: Energetyka
Field of Specialization: Nuclear Power Engineering
Course results:

Grading criteria:

Bibliography:

Course results:

Grading criteria:
2 tests on theoretical part, work and progress of each student are evaluated in the framework of the point system, individual semester project

Detailed contents:
Additional remarks (by course staff):
The laboratory groups can consist of at most 12 students.
Sylabus

Course name: Computer Science 1
Course name in other language: CS1
Short name: CS1
Course number: ML.ANW106
Course language: English
Responsible for the course: dr inż. Stanisław Gepner

ECTS: 5
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate
weekly: [2, 0, 2, 0, 0,]
Form of grading: Continuous assessment
by semester: [30, 0, 30, 0, 0,]

Field of Study: Energetyka - undergraduate, full time
Field of Specialization: Lotnictwo i Kosmonautyka - undergraduate, full time
Study level: Mechanical Engineering - undergraduate, full time
Recommended semester: Mechanika i Budowa - undergraduate, full time
Maszyn - undergraduate, full time

Contents - short:
Basic ability to write, compile and run programs in the C language

Bibliography:

Grading criteria:
2 tests on theoretical part, work and progress of each student are evaluated in the framework of the point system, individual semester project.

Detailed contents:
Basic information related to operating systems and computer networks. Word-processing and spreadsheets used in typical engineering applications. Programming language C - variables and their types, arithmetical and logical operations, control statements, functions, tables and pointers, structures. Input and Output. Code examples. Basic algorithms (sorting), simple numerical methods. Practical programming skills.

Additional remarks (by course staff):
The laboratory groups can consist of at most 12 students
Sylabus

Course name: Computer Science 2
Course name in other language:
Short name: CS2
Course number: ML.ANW114
Course language: English
Responsible for the course: prof. nzw. dr hab. inż. Jacek Szumbarski

ECTS: 2
Course level: Intermediate
Form of grading: Continuous assessment
Number of hours: \[Lc, \ T, \ Lb, \ P, \ S, \]
weekly: \[1, \ 0, \ 1, \ 0, \ 0, \]
by semester: \[15, \ 0, \ 15, \ 0, \ 0, \]

Field of Study: Energetyka
Field of Specialization: undergraduate, full time
Study level: Recommended semester: 2
Recommended semester:
Lotnictwo i Kosmonautyka - undergraduate, full time
Mechanical Engineering - undergraduate, full time
Mechanika i Budowa - undergraduate, full time
Maszyn - undergraduate, full time

Recommended prerequisites:
Calculus 1 (ML.ANW102)

Contents - short:
Basic knowledge and practical skills in the area of numerical techniques applied to the problems like: post-processing of measurement data and numerical analysis of simple dynamical systems.

Bibliography:
1) Lecture notes provided by the course instructor.

Course results:
Basic theoretical knowledge in the elementary numerical methods such as polynomial and spline interpolation, polynomial approximation, root finding, numerical integration, solution of ordinary differential equations (Euler, Runge-Kutta methods) and linear algebraic systems (Gauss elimination and related methods)
Development of the programming skills in C language
Grading criteria:
2 tests on theoretical part, work and progress of each student are evaluated in the framework of the point system, individual semester project.

Detailed contents:
2. Least-squares approximation: formulation and geometrical interpretation, the method of normal equations, the method of orthogonal polynomials.
4. Numerical solution of initial-value problems for ordinary differential equations: transformation to the standard form, the Euler method and convergence analysis, single-step higher-order methods, the standard RK4 method, problem of the time step adaptation.
5. Cubic spline interpolation: formulation, end-point conditions, 3-diagonal systems and the Thomas algorithm.

Additional remarks (by course staff):
The laboratory groups can consist of at most 12 students.
Sylabus

Course name: Economics
Course name in other language: ECON
Short name: ML.ANW112
Course language: English
Responsible for the course: prof. dr hab. Janusz Gudowski

ECTS: 2
Course level: Intermediate
Form of grading: Continous assessment

Number of hours:
[Lc, T, Lb, P, S,]
weekly: [2, 0, 0, 0, 0,]
by semester: [30, 0, 0, 0, 0,]

Field of Study: Energetyka
Field of Specialization: undergraduate, full time
Recommended semester: 2

Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: undergraduate, full time
Recommended semester: 2

Field of Study: Mechanical Engineering
Field of Specialization: undergraduate, full time
Recommended semester: 2

Field of Study: Mechanika i Budowa
Field of Specialization: undergraduate, full time
Recommended semester: 2

Contents - short:
To learn fundamental economics

Bibliography:
1. P.A. Samuelson, W.D. Nordhaus, Introduction to economics (latest issue)

Course results:
After completing the course the students will be able to specify the rules of economic phenomenons

Grading criteria:
Test

Detailed contents:
Economics as the science. The sense of processes of production. The ideas of wealth and its sources.
The sense of value. The essence of economic growth.
Quantitative and qualitative aspects of economic growth. The level of life. The idea of development
Notions: market-supply-demand; elasticities measures; types of goods, the theory of consumer
Types of market; theory of competition; the state contribution to market economy
Genesis of contemporary macroeconomcs. The conflict between demand and neoliberal approach
The essence of the main today's schools of economics
The main research interest in contemporary economics. Searching the new paradigm. Neoclassical, post-
Keynes and institutional economics. Development economics. Ecologic approach in economics.
Additional remarks (by course staff):
Sylabus

<table>
<thead>
<tr>
<th>Course name:</th>
<th>Elective Courses Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course name in other language:</td>
<td>Elective Courses Engineering</td>
</tr>
<tr>
<td>Short name:</td>
<td>ECENG</td>
</tr>
<tr>
<td>Course number:</td>
<td>ML.ECENG02</td>
</tr>
<tr>
<td>Course language:</td>
<td>English</td>
</tr>
<tr>
<td>Responsible for the course:</td>
<td>Brak Danych</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS:</th>
<th>2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Number of hours:</th>
<th>Lc, T, Lb, P, S,</th>
</tr>
</thead>
<tbody>
<tr>
<td>weekly:</td>
<td>0, 0, 0, 0, 0,</td>
</tr>
<tr>
<td>by semester:</td>
<td>0, 0, 0, 0, 0,</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of grading:</th>
<th>Continuous assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field of Study:</td>
<td>Lotnictwo i Kosmonautyka</td>
</tr>
<tr>
<td>Field of Specialization:</td>
<td>Aerospace engineering</td>
</tr>
<tr>
<td>Study level:</td>
<td>undergraduate, full time</td>
</tr>
<tr>
<td>Recommended semester:</td>
<td>6</td>
</tr>
</tbody>
</table>
Sylabus

Course name: Electric Circuits 1
Course name in other language:
Short name: ELCIR1
Course number: ML.ANW113
Course language: English
Responsible for the course: prof. dr hab. inż. Tadeusz Skoczkowski
ECTS: 3
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate
weekly: [2, 1, 0, 0, 0,]
Form of grading: Exam
by semester: [30, 15, 0, 0, 0,]
Field of Study: Energetyka
Field of Specialization: undergraduate, full time
Study level: Recommended semester: 2
Lotnictwo i Kosmonautyka - undergraduate, full time
Mechanical Engineering - undergraduate, full time
Mechanika i Budowa - undergraduate, full time
Maszyn - undergraduate, full time

Recommended prerequisites:
Calculus 1 (ML.ANW102), Calculus 2 (ML.ANW90), Computer Science 1 (ML.ANW106)

Contents - short:
To be able to use fundamental laws of linear electric circuits to solve electric DC and AC circuits.
Know how to analyse electric circuits containing independent and dependent sources using loop and nodal techniques.
Know how to analyse electric circuits using additional techniques e.g. superposition, source transformation, Thevenin's and Norton's equivalent circuits.
To get familiar with calculation of electric power and energy in DC and AC electric circuits.
To be able to analyse first- and second order transient circuits.
To understand variable-frequency performance of basic elements, resonant circuits and passive filters.

Bibliography:
Further Readings:
Course results:
Ability to apply knowledge of mathematics, basic science, and engineering to solve problems encompassing electric circuits.
Ability to identify and formulate a problem related to electric circuits.
Ability to apply the fundamental laws of electric circuit to compute basic electric quantities (current, voltage, powers).
Ability to select a simple electrical component or system to meet desired engineering needs.

Grading criteria:
Two assessments + final exam

Detailed contents:

Additional remarks (by course staff):
Sylabus

<table>
<thead>
<tr>
<th>Course name:</th>
<th>Electronics 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course name in other language:</td>
<td>ENICS1</td>
</tr>
<tr>
<td>Short name:</td>
<td>ENICS1</td>
</tr>
<tr>
<td>Course number:</td>
<td>ML.ANW135</td>
</tr>
<tr>
<td>Course language:</td>
<td>English</td>
</tr>
<tr>
<td>Responsible for the course:</td>
<td>prof. dr hab. inż. Tadeusz Skoczkowski</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS:</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of hours:</td>
<td>[Lc, T, Lb, P, S,]</td>
</tr>
<tr>
<td>Course level:</td>
<td>Advanced</td>
</tr>
<tr>
<td>weekly:</td>
<td>[1, 1, 0, 0, 0,]</td>
</tr>
<tr>
<td>Form of grading:</td>
<td>Continuous assessment</td>
</tr>
<tr>
<td>by semester:</td>
<td>[15, 15, 0, 0, 0,]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field of Study:</th>
<th>Field of Specialization:</th>
<th>Study level:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energetyka</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>4</td>
</tr>
<tr>
<td>Lotnictwo i Kosmonautyka</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>4</td>
</tr>
<tr>
<td>Mechanika i Budowa</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>4</td>
</tr>
</tbody>
</table>

Recommended prerequisites:
- Electrical engineering (ML.ANW113A), Engineering Physics (ML.ANW104)

Contents - short:
- To obtain basic knowledge on analogue and digital electronic circuit.
- To understand the principle of operation, construction and characteristics of basic semiconductor devices.
- To learn the terminology of electronics.
- To understand the functions performed by typical analogue and digital components and circuits.
- To be able to analyse simple electronic circuit.
- To get familiar with troubleshooting in electronic circuits.
- To get familiar with manufacture’s specification sheets and application guidelines.

Bibliography:
5. EWB MultiSim Student Edition Lite v.10.
Course results:

Ability to understand fundamentals, abilities and limits of modern electronics.
Ability to recognise and understand basic electronic circuits.
Ability to apply knowledge of electric circuit to analyse basic electronics circuits.
Ability to use manufacture’s documentation to select proper elements and circuits.
Ability to find faults in basic electronic circuits.

Grading criteria:

lesson quizzes + two tests + final assessment

Detailed contents:

ANALOGUE

DIGITAL

2. Logic Gates. Inverter. AND Gate. OR Gate. NAND Gate. NOR Gate. Exclusive-OR and Exclusive-NOR.

Sylabus

Course name: Electronics 2 (lab)
Course name in other language: ENICS2
Short name: ENICS2
Course number: ML.ANK316
Course language: English
Responsible for the course: dr inż. Jan Szymczyk

ECTS: 1
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate
weekly: [0, 0, 1, 0, 0,]
Form of grading: Continuous assessment
by semester: [0, 0, 15, 0, 0,]

Field of Study: Field of Specialization:
Energetyka Power engineering
Lotnictwo i Kosmonautyka Aerospace engineering
Study level: Recommended semester:
undergraduate, full time 4
undergraduate, full time 4

Recommended prerequisites:
Electric Circuits 1 (ML.ANW113), Electric circuits 2 (ML.ANK317), Electronics 1 (ML.ANW135)

Contents - short:
The aim of this course is to develop and practice the skills learned in Electronics I, demonstrate measurement methods and electronic devices in practice.

Bibliography:
5. Laboratory tutorial.

Course results:
After completing this course students will be able to specify basic electronic parameters, its interpretation and meanings and implement methods of measurement of electronics circuits

Grading criteria:
short tests before and after each exercise

Detailed contents:
transistor amplifiers, operational amplifier, sine wave oscillators, voltage stabilizers (direct current), impulse circuits, digital circuits, analogue-digital converters and digital-analogue converters.
Course name: Engineering Diploma Seminar
Course name in other language: EDS
Short name: ML.ANW128
Course number: ML.ANW128
Course language: English
Responsible for the course: prof. nzw. dr hab. inż. Paweł Pyrzanowski
ECTS: 2
Number of hours: [Lc, T, Lb, P, S,]
Course level: Advanced
weekly: [0, 0, 0, 2, 0,]
Form of grading: Exam
by semester: [0, 0, 0, 30, 0,]
Field of Study: Energetyka
Field of Specialization: undergraduate, full time
Study level: Recommended semester: 7
Lotnictwo i Kosmonautyka
undergraduate, full time
7
Mechanical Engineering
undergraduate, full time
7
Mechanika i Budowa
undergraduate, full time
7
Maszyn
Course results:
Gaining the ability of information gathering, and performing its critical assessment (especially concerning information obtained from the Internet). Learning how to prepare short and concise presentations and how to present in limited time. Learning how to defend a thesis in front of an audience.
Grading criteria:
The elements that are subject to evaluation include: the quality of collected information, quality of elaborated analysis, especially the critical discussion of collected data, and quality of the given presentation. It is recommended that the presentation is conducted during a student group meeting, and the students should contribute to its evaluation.
Detailed contents:
It is recommended that the subject is completed in two steps:
1. Collecting materials on the given subject with the aid of all available information sources: including books, textbooks, journals and the Internet. The collected material must be analysed and summarised in the form of a short report containing references to the literature sources used. This part should be
conducted under the supervision of the advisor and its progress must be controlled during individual meetings. An important part of this stage is a critical analysis of the collected material and its relation to the knowledge gained during studies. It is required to use both domestic and international source materials.

2. Work presentation. Results presentation must be performed in front of a bigger audience during a student group seminar. Each of the students will be given 10-15 minutes of presentation time, followed with questions stated by the seminar participants. This stage is considered preparation to the upcoming thesis defense.

Additional remarks (by course staff):

The seminar should be prepared under the supervision of a scientific supervisor. It must follow the engineering diploma thesis themes. The seminar should match the area of studies programme and specialisation.
Sylabus

Course name: Engineering Diploma Thesis
Short name: EDT
Course number: ML.ANW136
Course language: English
Responsible for the course: prof. nzw. dr hab. inż. Paweł Pyrzanowski
ECTS: 15
Number of hours: [Lc, T, Lb, P, S,]
Course level: Advanced
weekly: [0, 0, 0, 12, 0,]
Form of grading: Exam
by semester: [0, 0, 0, 180, 0,]

Field of Study: Energetyka
Field of Specialization: undergraduate, full time
Study level: Recommended semester: 7
Lotnictwo i Kosmonautyka
Mechanical Engineering
Mechanika i Budowa
Maszyn

Contents - short:
Synthesis of engineering knowledge acquired during first degree studies. Gaining the ability of solving the given problem and preparing the report.

Bibliography:
Books, textbooks, scientific journals, the Internet

Course results:
Gaining the ability: - to solve the engineering problem, - perform selection of relevant literature, - choosing research methods, - presentation of obtained results and its critical analysis.

Grading criteria:
The promoter and reviewer verify the realisation of task given to the student, they fill out the thesis assessment forms. With positive evaluation the student is permitted to diploma defence, the final grade is decided by the commission.

Detailed contents:
Detailed contents depend on the topic and the nature of work (design-prototyping, computational, experimental).
Additional remarks (by course staff):

The scope of work is terms to consultation between the student and his individual supervisor. The topic must be consistent with study programme and specialisation.

The elaborated thesis report is evaluated. The student is permitted to attend the diploma exam (and the diploma defence) if he/she completed the required study programme and the other requirements specified in study regulations are fulfilled.
Sylabus

Course name: Engineering Graphics
Course name in other language: ENGRA
Short name: ML.ANW105
Course language: English
Responsible for the course: dr inż. Witold Mirski
ECTS: 2
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate
weekly: [1, 0, 0, 1, 0,]
Form of grading: Continuous assessment
by semester: [15, 0, 0, 15, 0,]

Field of Study: Energetyka - undergraduate, full time
Field of Specialization: Lotnictwo i Kosmonautyka - undergraduate, full time
Study level: Mechanical Engineering - undergraduate, full time
Recommended semester: Mechanika i Budowa - undergraduate, full time
Maszyn - undergraduate, full time

Contents - short:
Creating the orthogonal projection of spatial geometrical forms onto adequate plane of projection.
Learning of the spatial imagination.

Bibliography:

Course results:
Getting the skill of rational use of space.

Grading criteria:
Positive results of tests as well as home and class work.

Detailed contents:
Basic information about the axonometric projection. Introduction to the descriptive geometry using the Monge’s method. Projection of such simple geometric elements as points, straight lines and planes. Their common elements. Spatial relationships between those elements. Auxiliary-view method. Projection of revolution. Projection of surfaces of basic geometric shapes: rectangular prisms, cylinders, cones and spheres (cross-sections and points of intersections, intersection lines. Creating of components of complex objects on the base of two-dimensional sketch using a Computer Aided Design three-dimensional system (3D-CAD).
Additional remarks (by course staff):
Two teachers for group of 26÷32 students (tutorial). Term of registration according to the dean’s information.
Sylabus

Course name: Engineering Graphics - CAD 1
Course name in other language:
Short name: EGCAD1
Course number: ML.ANW118
Course language: English
Responsible for the course: dr inż. Witold Mirski
ECTS: 2
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate
weekly: [0, 0, 0, 2, 0,]
Form of grading: Continuous assessment
by semester: [0, 0, 0, 30, 0,]

Field of Study: Energetyka
Field of Specialization: undergraduate, full time
Study level: Recommended semester: 2
Recommended prerequisites: Engineering Graphics (ML.ANW105)

Contents - short:
Making views of machine's element basing on the real object according to the rules of International Standards (ISO) and the technical drawing.

Bibliography:
3. International (ISO) and Polish Standards.

Course results:
Getting the skill of making the technical drawing of machine's element according to the rules of International (ISO) and Polish Standards - drawing by hand and using the 2D-CAD system.

Grading criteria:
Positive results of tests as well as home and class work

Detailed contents:
Introduction to the technical drawing. Part view and axonometric projection of machine’s element basing on the real object. Modification of the technical drawing. Technical drawing of assemblies and parts with

Additional remarks (by course staff):
Group of 12 students for one teacher. Term of registration according to the information of dean of faculty.
Sylabus

Course name: Engineering Graphics - CAD 2
Course name in other language:
Short name: EGCAD2
Course number: ML.ANK431
Course language: English
Responsible for the course: dr inż. Witold Mirski
ECTS: 2
Number of hours: [Lc, T, Lb, P, S,]
Course level: Advanced
Form of grading: Continuous assessment
by semester: [0, 0, 0, 30, 0,]

Field of Study:
Lotnictwo i Kosmonautyka - Aerospace engineering
Mechanika i Budowa - Computer Aided Engineering_specialność

Study level:
undergraduate, full time

Recommended semester:
3

Recommended prerequisites:
Engineering Graphics - CAD 1 (ML.ANW118)

Contents - short:
Creating the technical drawing of machine's element and assembly drawing by hands and using the 2D-CAD system. Introduction to the 3D-CAD system (Drafting Module). Making plain paper technical documentation basing on the given spatial model created by the use of 3D-CAD system.

Bibliography:
3. International (ISO) and Polish Standards.

Course results:
Getting the skill of making the assembly drawing and working drawing of machine’s element with notation of fit and tolerance - drawing by hand and using the 2D-CAD system, according to the rules of International (ISO) and Polish Standards. Getting the skill of reading the assembly drawing. Base information about 3D-CAD system (Drafting Module).

Grading criteria:
Positive results of tests as well as home and class work

Detailed contents:
Technical drawing of machine’s elements and assembly drawing created by hands and using the 2D-CAD system. Part view of assembly basing on the real object. Notation of fit and tolerance. Notation of heat treatment. Axonometric projection of joined machine’s elements on the base of the assembly drawing.
Introduction to making of plain paper documentation basing on the given spatial model created by the use of 3D-CAD system.

Additional remarks (by course staff):
One teacher for group of 12 students. Term of registration according to the dean's information.
Engineering Physics

<table>
<thead>
<tr>
<th>Course name:</th>
<th>Engineering Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course name in other language:</td>
<td></td>
</tr>
<tr>
<td>Short name:</td>
<td>EPHYS</td>
</tr>
<tr>
<td>Course number:</td>
<td>ML.ANW104</td>
</tr>
<tr>
<td>Course language:</td>
<td>English</td>
</tr>
<tr>
<td>Responsible for the course:</td>
<td>dr inż. Nikołaj Uzunow</td>
</tr>
<tr>
<td>ECTS:</td>
<td>3</td>
</tr>
<tr>
<td>Course level:</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Form of grading:</td>
<td>Continuous assessment</td>
</tr>
<tr>
<td>Number of hours:</td>
<td>[Lc, T, Lb, P, S]</td>
</tr>
<tr>
<td>weekly:</td>
<td>[1, 2, 0, 0, 0]</td>
</tr>
<tr>
<td>by semester:</td>
<td>[15, 30, 0, 0, 0]</td>
</tr>
<tr>
<td>Field of Study:</td>
<td>Energetyka</td>
</tr>
<tr>
<td>Field of Specialization:</td>
<td>undergraduate, full time</td>
</tr>
<tr>
<td>Study level:</td>
<td>1</td>
</tr>
<tr>
<td>Recommended semester:</td>
<td>1</td>
</tr>
<tr>
<td>Field of Study:</td>
<td>Lotnictwo i Kosmonautyka</td>
</tr>
<tr>
<td>Field of Specialization:</td>
<td>undergraduate, full time</td>
</tr>
<tr>
<td>Study level:</td>
<td>1</td>
</tr>
<tr>
<td>Recommended semester:</td>
<td>1</td>
</tr>
<tr>
<td>Field of Study:</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>Field of Specialization:</td>
<td>undergraduate, full time</td>
</tr>
<tr>
<td>Study level:</td>
<td>1</td>
</tr>
<tr>
<td>Recommended semester:</td>
<td>1</td>
</tr>
<tr>
<td>Field of Study:</td>
<td>Mechanika i Budowa</td>
</tr>
<tr>
<td>Field of Specialization:</td>
<td>undergraduate, full time</td>
</tr>
<tr>
<td>Study level:</td>
<td>1</td>
</tr>
<tr>
<td>Recommended semester:</td>
<td>1</td>
</tr>
<tr>
<td>Field of Study:</td>
<td>Maszyn</td>
</tr>
<tr>
<td>Field of Specialization:</td>
<td></td>
</tr>
<tr>
<td>Study level:</td>
<td></td>
</tr>
<tr>
<td>Recommended semester:</td>
<td></td>
</tr>
</tbody>
</table>

Contents - short:
Recollection of the basic principles and laws of the fields of physics being most important regarding the programme of this Faculty: mechanics - mass, momentum, moment of momentum, and energy conservation laws in translatory and rotary motion; field theory - gravity field, electrostatic field, magnetic field; thermodynamics - intensive quantities, perfect gas, gas processes, extensive quantities, first law of thermodynamics, thermodynamic cycles, second law of thermodynamics; hydrodynamics - continuity law, Bernoulli equation.

Bibliography:

Course results:
Better preparation for the much more profound and complex courses on mechanics, electrotechnics, thermodynamics, and fluid dynamics in the next semesters.

Grading criteria:
Two tests: I – conservation laws, field theory; II - thermodynamics, hydrodynamics. Both tests have to be passed. The final grade is an average of the grades obtained on the tests.

Detailed contents:
Lectures and exercises:
1. Basic physical quantities and SI measuring units; scalar and vector quantities; basic vector calculus.
2. Physical systems; fundamental interactions; modelling principles; Newton laws; curvilinear motion.
3. Momentum change law; momentum conservation law; moment of inertia; Steiner law; moment of momentum change law; moment of momentum conservation law. Engineering applications.
4. Kinetic energy in translatory and rotary motion; potential energy; conservative and dissipative forces; mechanical energy change law; mechanical energy conservation law. Engineering applications.
5. Gravity field: source quantity (mass), force, intensity (acceleration), flux, potential, energy. Engineering applications.
8. Intensive thermodynamic quantities; macroscopic (classical) and microscopic (statistical) approach; mass and molar approach; perfect gas model; Clapeyron equation; Dalton law. Engineering applications.
9. Gas processes; specific heat; extensive quantities; first law of thermodynamics. Engineering applications.
11. Hydrodynamics: compressibility; continuity law; Bernoulli equation. Engineering applications.
Sylabus

Course name: Environment Protection
Course name in other language:
Short name: EPROT
Course number: ML.ANW109
Course language: English
Responsible for the course: dr inż. Piotr Krawczyk
ECTS: 2
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate
weekly: [2, 0, 0, 0, 0,]
Form of grading: Continuous assessment
by semester: [30, 0, 0, 0, 0,]
Field of Study: Field of Specialization:
Study level: Recommended semester:
Energetyka - undergraduate, full time 1
Lotnictwo i Kosmonautyka - undergraduate, full time 1
Mechanical Engineering - undergraduate, full time 1
Mechanika i Budowa - undergraduate, full time 1
Maszyn

Contents - short:
Basic knowledge of the environment protection problems

Bibliography:
No relevant issues

Grading criteria:
The assessment is based on two tests, held in the middle and at the end of the semester. The tests consist of several questions to be answered. Students have to obtain positive grades on both tests. The final grade is calculated as an average from the two tests.

Detailed contents:
Sylabus

Course name: Finite Element Method 1
Course name in other language: FEM1
Short name: ML.ANK342
Course language: English
Responsible for the course: prof. nzw. dr hab. inż. Grzegorz Krzesiński

ECTS: 4
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate weekly: [2, 0, 1, 0, 0,]
Form of grading: Continuous assessment by semester: [30, 0, 15, 0, 0,]

Field of Study: Energetyka Field of Specialization: Nuclear Power Engineering
Study level: graduate studies, full time
Recommended semester: 1

Field of Study: Power engineering Field of Specialization: graduate studies, full time
Study level: 1

Field of Study: Lotnictwo i Kosmonautyka Field of Specialization: Aerospace engineering
Study level: undergraduate, full time
Recommended semester: 6

Field of Study: Mechanika i Budowa Field of Specialization: Computer Aided Engineering_specjalność
Study level: undergraduate, full time
Recommended semester: 4

Field of Study: Maszyn Field of Specialization:
Study level:

Recommended prerequisites:
Mechanics of Structures 1 (ML.ANW117), Mechanics of structures 3 (ML.ANK428)

Contents - short:
The course supplies the basic knowledge and skills required for understanding FEM and simple practical applications of the method. It consists of the theoretical part (30 hours of the lectures) and the practical ones (15 hours of the finite element modelling using ANSYS program).

Bibliography:
Lecture notes
Saeed Moaveni: Finite Element Analysis. Theory and Application with ANSYS, Paerson Ed. 2003

Course results:
After completing the course the students will be able to build simple FE models and will understand the applications and limitations of the method in stress analysis.
Grading criteria:
Assessment based on 2 tests and the results of computer lab (the reports)

Detailed contents:
Laboratory: Introduction to practical problems of FE modeling in ANSYS, 2D and 3D linear stress analysis, analysis of a simple shell structure.
Sylabus

Course name: Finite Element Method 2
Course name in other language:
Short name: FEM2
Course number: ML.ANK479
Course language: English
Responsible for the course: dr inż. Piotr Marek
ECTS: 2
Course level: Intermediate
Form of grading: Continuous assessment
Number of hours:
- weekly: [Lc, T, Lb, P, S]
- by semester: [15, 0, 15, 0, 0]

Field of Study:
Field of Specialization:
- Lotnictwo i Kosmonautyka: Aerospace engineering
- Mechanika i Budowa: Computer Aided Engineering specjalność
Study level: undergraduate, full time
Recommended semester: 7
Course name: Fluid Mechanics 1
Course name in other language:
Short name: FLUMECH1
Course number: ML.ANW122
Course language: English
Responsible for the course: prof. nzw. dr hab. inż. Jacek Szumbarski
ECTS: 4
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate
weekly: [2, 1, 0, 0, 0,]
Form of grading: Exam
by semester: [30, 15, 0, 0, 0,]
Field of Study: Field of Specialization: Study level: Recommended semester:
Energetyka - undergraduate, full time 3
Lotnictwo i Kosmonautyka - undergraduate, full time 3
Mechanical Engineering - undergraduate, full time 3
Mechanika i Budowa Maszyn - undergraduate, full time 3

Contents - short:
Basic concepts and theoretical constructs of the mechanics of continuum, summary of necessary mathematical tools.
Fluid statics: basic theory and engineering applications.
Fluid kinematics: description of fluid motion and deformation
Fluid dynamics: stress in fluids, equations of motion, energy equation, Bernoulli equation, calculation of dynamic reactions, etc.
Selected models of fluid flow: flow in pipes, boundary layer.
Elementary introduction to turbulent flows.

Bibliography:
4. Lecture notes provided by the instructor (PDF slides)

Course results:
Good knowledge of the fundamental concepts and principles of the Fluid Mechanics, skills in solving basic problems in fluid statics and dynamics of an ideal and viscous liquid.
Grading criteria:
2 tests in the tutorial part + the final exam.

Detailed contents:
1. Fluid as a continuous medium
2. Elements of fluid statics: equilibrium equations and condition, manometers, fluid reaction on the solid walls, the Archimedes law.
3. Fluid kinematics: Lagrangian and Eulerian descriptions, vector field of the fluid velocity, trajectories of fluid elements and streamlines, the streamfunction, vorticity and related theorems, tensor description of the fluid deformation.
4. Principle of mass conservations and the continuity equation.
5. Dynamics of continuum: tensor description of stress in fluid, the linear momentum principle and general equation of motion, the principle of angular momentum and the symmetry of the stress tensor.
6. Viscous fluids: rheological model of the Newtonian fluid, Navier-Stokes Equation, problem of the boundary conditions, examples of analytical solutions.
8. Integral form of the momentum principle and its application to determination of the reaction force exerted on immersed bodies. Aerodynamic coefficients.
11. Introduction to the boundary layer theory: Prandtl's equation, the layer thickness, The Blasius solution, integral von Karman equation, boundary layer separation.
12. Elementary introduction to the theory of turbulent flows: physical characteristics of a turbulent flow, the laminar-turbulent transition, averaging procedure and the Reynolds Equations, the closure problem.

Additional remarks (by course staff):
Sylabus

<table>
<thead>
<tr>
<th>Course name:</th>
<th>Foreign language 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short name:</td>
<td>Język obcy 1</td>
</tr>
<tr>
<td>Course number:</td>
<td>ML.ANJGA1</td>
</tr>
<tr>
<td>Course language:</td>
<td>Polish</td>
</tr>
<tr>
<td>Responsible for the course:</td>
<td>mgr Olga Pławska</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS:</th>
<th>2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Number of hours:</th>
<th>[Lc, T, Lb, P, S,]</th>
</tr>
</thead>
<tbody>
<tr>
<td>weekly:</td>
<td>[0, 2, 0, 0, 0,]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of grading:</th>
<th>Continous assement</th>
</tr>
</thead>
<tbody>
<tr>
<td>by semester:</td>
<td>[0, 30, 0, 0, 0,]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field of Study:</th>
<th>Field of Specialization:</th>
<th>Study level:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energetyka</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>1</td>
</tr>
<tr>
<td>Lotnictwo i Kosmonautyka</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>1</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>1</td>
</tr>
<tr>
<td>Mechanika i Budowa</td>
<td>Maszyn</td>
<td>undergraduate, full time</td>
<td>1</td>
</tr>
</tbody>
</table>
Sylabus

Course name: Foreign language 2
Course name in other language: Język obcy 2
Short name: JGRANG2
Course number: ML.ANJGA2
Course language: Polish
Responsible for the course: mgr Olga Pławska
ECTS: 2
Number of hours: [Lc, T, Lb, P, S,]
weekly: [0, 2, 0, 0, 0,]
Form of grading: Continuous assessment by semester: [0, 30, 0, 0, 0,]

Field of Study: Field of Specialization: Study level: Recommended semester:
Energetyka - undergraduate, full time 2
Lotnictwo i Kosmonautyka - undergraduate, full time 2
Mechanical Engineering - undergraduate, full time 2
Mechanika i Budowa Maszyn - undergraduate, full time 2
Sylabus

Course name: Foreign language 3
Course name in other language: Język obcy 3
Short name: JGRANG3
Course number: ML.ANJGA3
Course language: Polish
Responsible for the course: mgr Olga Pławska

ECTS: 2
Number of hours: [Lc, T, Lb, P, S,]
weekly: [0, 2, 0, 0, 0,]
Form of grading: Continuous assessment
by semester: [0, 30, 0, 0, 0,]

Field of Study:
Field of Specialization:
Study level:
Recommended semester:

<table>
<thead>
<tr>
<th>Field of Study</th>
<th>Field of Specialization</th>
<th>Study level</th>
<th>Recommended semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energetyka</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>3</td>
</tr>
<tr>
<td>Lotnictwo i Kosmonautyka</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>3</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>3</td>
</tr>
<tr>
<td>Mechanika i Budowa Maszyn</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>3</td>
</tr>
</tbody>
</table>
Syllabus

Course name: Foreign language 4
Course name in other language: język obcy 4
Short name: JGRANG4
Course number: ML.ANJGA4
Course language: Polish
Responsible for the course: mgr Olga Pławska

ECTS: 2

Number of hours: [Lc, T, Lb, P, S,]
weekly: [0, 2, 0, 0, 0,]
by semester: [0, 30, 0, 0, 0,]

Form of grading: Continuous assessment

Field of Study: Energetyka
Field of Specialization: undergraduate, full time
Study level: 4
Recommended semester: 4

Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: undergraduate, full time
Study level: 4
Recommended semester: 4

Field of Study: Mechanical Engineering
Field of Specialization: undergraduate, full time
Study level: 4
Recommended semester: 4

Field of Study: Mechanika i Budowa Maszyn
Field of Specialization: undergraduate, full time
Study level: 4
Recommended semester: 4
Sylabus

Course name: Health and Safety Training
Course name in other language: BHP
Short name: HST
Course number: ML.ANW71
Course language: English
Responsible for the course: prof. nzw. dr hab. inż. Paweł Pyrzanowski

<table>
<thead>
<tr>
<th>ECTS:</th>
<th>0</th>
<th>Number of hours:</th>
<th>[Lc, T, Lb, P, S,]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course level:</td>
<td>Intermediate</td>
<td>weekly:</td>
<td>[0, 1, 0, 0, 0,]</td>
</tr>
<tr>
<td>Form of grading:</td>
<td>Continuous assessment</td>
<td>by semester:</td>
<td>[0, 15, 0, 0, 0,]</td>
</tr>
</tbody>
</table>

Field of Study:
Field of Specialization:
Study level:
Recommended semester:

Energetyka	-	undergraduate, full time	1
Lotnictwo i Kosmonautyka	-	undergraduate, full time	1
Mechanical Engineering	-	undergraduate, full time	1
Mechanika i Budowa Maszyn	-	undergraduate, full time	1
Sylabus

Course name: Integrated CAD/CAM/CAE Systems 1
Course name in other language: ICS1
Short name: ML.ANK436
Course language: English
Responsible for the course: prof. nzw. dr hab. inż. Stanisław Bogdański
ECTS: 2
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate weekly: [0, 0, 2, 0, 0,]
Form of grading: Continuous assessment by semester: [0, 0, 30, 0, 0,]

Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: undergraduate, full time
Recommended semester: 4

Field of Study: Mechanika i Budowa
Field of Specialization: Computer Aided Engineering Specjalność
Study level: undergraduate, full time
Recommended semester: 4

Recommended prerequisites:

Contents - short:
Introduction to the most advanced Integrated CAD/CAM/CAE Systems and learning the basic functions of 2D and 3D modeling as well as the fundamentals of "Drafting".

Bibliography:
Tutorials and manuals issued by Siemens UGS PLM Software available „on line” and distributed among students in electronic forms.

Course results:
After completing the course, student should gain the ability to use the systems NX Unigraphics and CATIA-Version 5 in the basic range. In particular she/he should be able:
- to create the 2D objects and using them for creating 3D objects;
- to utilise the 3D modelling tools for creating single machine components;
- to utilise the specialised modules of the system for creating simple assemblies;
- to create simple drafting drawings.

Grading criteria:
The final grade for the course is determined on the basis of the continuous assessment i.e. the results of the regular (usually two) and/or the improvement tests.
http://itlims.meil.pw.edu.pl/zpk/dla_studentow/regulaminy/
integrated_cad_cam_cae_systems_1.pdf
Detailed contents:
Introduction to the advanced contemporary CAD/CAM/CAE systems used in industry – typical structure, main modules, their roles and functions, strategy of use.
Practical applications of the systems in the following tasks:
• 2D modelling; points and curves on the plane, introduction to parametric sketcher,
• 3D modelling; creating separate objects (components) and building virtual models of machines and devices (assemblies),
• drafting; creating 2D engineering drawings (documentation) on the basis of 3D models.

Additional remarks (by course staff):
Standard registration procedure is required. Handouts are distributed during the course. Additional materials (problems, supplements, etc) are displayed on the course website.
Sylabus

Course name: Integrated Laboratory (AE)
Course name in other language: INTEL
Short name: ML.ANK471
Course number: English
Course language: mgr inż. Marek Tracz
Responsible for the course:
ECTS: 3
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate
weekly: [0, 0, 2, 0, 0,]
Form of grading: Continuous assessment
by semester: [0, 0, 30, 0, 0,]
Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: undergraduate, full time
Recommended semester: 4

Recommended prerequisites:
Fluid Mechanics 1 (ML.ANW122), Mechanics of Structures 1 (ML.ANW117), Thermodynamics 1 (ML.ANW116)

Contents - short:
Achieving of skill in leading experimental investigations in the field of aerodynamics, thermodynamics and mechanics of structures.

Bibliography:

Course results:
Planning and leading experimental investigations.

Grading criteria:
On the base of report and short test reffered to each laboratory session.

Detailed contents:
- Aerodynamics Laboratory
1) Velocity measurement with use of the thermoanemometer. Calibrating, measurement's rules, turbulence parameter.

2) Velocity measurement with use of the accumulative Prandlt's and Pitot's pipes. Air industrial average velocity measurement devices. Applicability and accuracy of them.

3) Flow visualisation - compressible and uncompressible. Acquainting with characteristic points in the aerodynamic trace and on the model surface. Leading of appearance and shock (impact) wave shape visualisation.

4) The cylinder resistance measurement. Measurement of the pressure distribution on the cylinder surface and evaluation of its total resistance basing on the momentum conservation rule.

5) Weight measurements of aerodynamic coefficients. Loads measurements on a model with help of three-component tensometric balance. Recounting of forces to coefficients, calculation of polar curve and the middle of the model pressure.

- Thermodynamics Laboratory.

1) Temperature measurements - thermodynamics temperature scale, calibration of temperature gauges.

2) Open system balance - combustion heat measurement.

3) Conversion of the air - air moisture investigation.

4) Measurement of insulators heat conductivity - plate device method in the steady state.

5) Searching of the heat diffusivity.

- Mechanics of Structures Laboratory.

1) Torsion - determination of the revolution angle, the unit twisting angle and Kirchhoff modulus in the compact cross-section bars. Determination of strains and stresses in the thin walled close profile and the middle of transversal forces in the thin walled open profile.

2) Bending - verification of the superposition and Betti's rules with help of flexometer measuring beam deflection. Verification of the de Saint Venant rule by tensometrical method. Determination of the Young modulus. Investigation of the oblique bending.

3) Tensometer method (strain gauge)- wide application range. Determination of plane stress state. Stress concentration coefficient.

4) Buckling - Southwell's metod giving experimental value of critical forces. Advanced loading cases of investigated bars.

5) Elastooptics - foundation of physical phenomenon, basic application of the elastooptics method. Determination of plane stress state. Stress concentration coefficient.

Additional remarks (by course staff):

Two six-person subgroups made from one laboratory group.
Course name: Intermediate Engineering Project
Course name in other language:
Short name: IEPRO
Course number: ML.ANW127
Course language: English
Responsible for the course: prof. nzw. dr hab. inż. Paweł Pyrzanski
ECTS: 6
Number of hours: [Lc, T, Lb, P, S,]
Course level: Advanced
weekly: [0, 0, 0, 4, 0,]
Form of grading: Exam
by semester: [0, 0, 0, 60, 0,]

Field of Study: Energetyka
Field of Specialization: undergraduate, full time
Study level: Recommended semester: 6

Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: undergraduate, full time
Study level: Recommended semester: 6

Field of Study: Mechanical Engineering
Field of Specialization: undergraduate, full time
Study level: Recommended semester: 6

Field of Study: Mechanika i Budowa
Field of Specialization: undergraduate, full time
Study level: Recommended semester: 6

Field of Study: Maszyn
Field of Specialization: undergraduate, full time
Study level: Recommended semester: 6

Contents - short:
Solution of a given problem and the elaboration of a short report on the subject of performed work.

Bibliography:
Books and textbooks, scientific journals, the Internet.

Course results:
Gaining the ability: to solve problems, perform selection of relevant literature, choosing research methods, presentation of obtained results and its critical analysis.

Grading criteria:
Evaluation criteria: problem statement, literature overview, problem solution and its written presentation.

Detailed contents:
Detailed contents depend on the topic and the nature of work (design-prototyping, computational, experimental).

Additional remarks (by course staff):
The scope of work is terms to consultation between the student and his individual supervisor. The topic must be consistent with study programme and specialisation.
Sylabus

Course name: Introduction to Aerospace
Course name in other language:
Short name: IAERO
Course number: ML.ANK466
Course language: English
Responsibile for the course: prof. nzw. dr hab. Tomasz Goetzendorf-Grabowski

ECTS: 2
Course level: Intermediate
Form of grading: Continuous assessment

Number of hours: [Lc, T, Lb, P, S,]
weekly: [1, 0, 0, 1, 0,]
by semester: [15, 0, 0, 15, 0,]

Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: undergraduate, full time
Recommended semester: 3

Contents - short:
Basic knowledge about history of aviation
Knowledge of present problems of aviation
Knowledge of basic terms on aeronautics and aircraft technology

Bibliography:
2. Selected lectures in electronic form (web site above)

Course results:
After subject is completed student should have the basic knowledge on:
• the history of aviation,
• present problems of aviation,
• basic terms on aeronautics and aircraft technology.

Grading criteria:
Three projects (including one in presentation form)

Additional remarks (by course staff):
Sylabus

Course name: Languages - C1_Exam (English)

Short name: EC1ANG

Course number: ML.NJAC1

Course language: English

Responsible for the course: mgr Olga Pławska

ECTS: 0

Number of hours: [Lc, T, Lb, P, S,]

Course level: Intermediate

Form of grading: Exam

weekly: [0, 0, 0, 0, 0,]

by semester: [0, 0, 0, 0, 0,]

Field of Study:

<table>
<thead>
<tr>
<th>Field of Study</th>
<th>Field of Specialization</th>
<th>Study level</th>
<th>Recommended semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energetyka</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>4</td>
</tr>
<tr>
<td>Lotnictwo i Kosmonautyka</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>4</td>
</tr>
<tr>
<td>Mechanika i Budowa Maszyn</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>4</td>
</tr>
<tr>
<td>Course name:</td>
<td>Library Training</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course name in other language:</td>
<td>Przysposobienie biblioteczne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short name:</td>
<td>LIBTRA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course number:</td>
<td>ML.ANW72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course language:</td>
<td>English</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Responsible for the course:</td>
<td>prof. nzw. dr hab. inż. Paweł Pyrzanowski</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECTS:	0
Course level:	Intermediate
Form of grading:	Continuous assessment

Number of hours:	[Lc, T, Lb, P, S,]
weekly:	[0, 1, 0, 0, 0,]
by semester:	[0, 15, 0, 0, 0,]

<table>
<thead>
<tr>
<th>Field of Study:</th>
<th>Field of Specialization:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energetyka</td>
<td>-</td>
</tr>
<tr>
<td>Lotnictwo i Kosmonautyka</td>
<td>-</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>-</td>
</tr>
<tr>
<td>Mechanika i Budowa</td>
<td>-</td>
</tr>
<tr>
<td>Maszyn</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study level:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>undergraduate, full time</td>
<td>1</td>
</tr>
</tbody>
</table>
Syllabus

Course name: Machine Design 1
Course number: ML.ANW124
Course language: English
Responsible for the course: prof. nzw. dr hab. inż. Stanisław Bogdański

ECTS: 3
Course level: Intermediate
Form of grading: Continuous assessment

Number of hours: [Lc, T, Lb, P, S,]
weekly: [1, 1, 0, 0, 0]
by semester: [15, 15, 0, 0, 0]

Field of Study: Energetyka
Field of Specialization: undergraduate, full time
Recommended semester: 3

Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: undergraduate, full time
Recommended semester: 3

Field of Study: Mechanical Engineering
Field of Specialization: undergraduate, full time
Recommended semester: 3

Field of Study: Mechanika i Budowa
Field of Specialization: undergraduate, full time
Recommended semester: 3

Field of Study: Maszyn
Field of Specialization: undergraduate, full time
Recommended semester: 3

Recommended prerequisites:
Algebra and Geometry (ML.ANW101), Calculus 1 (ML.ANW102), Calculus 2 (ML.ANW90), Computer Science 1 (ML.ANW106), Computer Science 2 (ML.ANW114), Engineering Graphics (ML.ANW105), Materials 1 (ML.ANW107), Mechanics 1 (ML.ANW108), Mechanics II (ML.ANW115), Mechanics of Structures 1 (ML.ANW117), Thermodynamics 1 (ML.ANW116)

Contents - short:
To gain an understanding of design philosophies and to learn how to incorporate into the process of design the earlier-studied principles of strength of materials, materials science, mechanics, etc. To learn the fundamentals of designing for static and fatigue loading with the use of simple machine elements (joints, fasteners, beams and shafts) as the examples

Bibliography:

Course results:
Understanding of design philosophies and ability to incorporate into the process of design the earlier-studied principles of strength of materials, materials science, mechanics, etc. Knowledge and ability to apply in practice the fundamentals of designing for static and fatigue loading with the use of simple
machine elements (joints, screws and fasteners, preloaded bolts under static and dynamic loadings, beams and shafts) as the examples.

Grading criteria:
The basic points of regulations associated with grading are as follows:
1. Only the student who is registered for this course can complete it.
2. The presence at the lectures and tutorials of the course is obligatory and checked.
3. Basically, in order to complete the course one has to get positive grades from all three regular tests held during the course. However, the student who has got at least one positive grade from these tests has also a chance to complete the course by taking an additional test called "the improvement test".
4. "The improvement test" is organized once at the end of the semester. This test covers the whole material of the course.
5. In extraordinary cases the Head of the Fundamentals of Machine Design Department makes the decision concerning completing the course.
The final grade for the course is determined on the basis of the continuous assessment i.e. the results from the regular and/or the improvement tests.
see: http://itlims.meil.pw.edu.pl/zpk/dla_studentow/regulaminy/machine_design_1.pdf

Detailed contents:
Introduction to design: design process, problem formulation and calculation, experimental tests, the engineering model, factors of safety and design codes, patents and standards, safety regulations, limiting conditions, optimization and evaluation criteria.
Static failure theories - short reminder.
Fatigue failure theories:
Mechanisms of fatigue failure (crack initiation and propagation stages, fracture), fatigue failure models (fatigue regimes, the stress-life and the strain-live approaches, the LEFM approach), fatigue loads (rotating machinery loading, service equipment loading),
measuring fatigue failure criteria (fully reversed stresses, S-N curve, endurance limit, fatigue strength, combined mean and alternating stresses, Gerber line, Goodman line, fracture mechanics criteria, testing actual assemblies).
Estimating fatigue failure criteria [theoretical and corrected fatigue strength and endurance limit, correction factors (loading, size, surface, temperature, reliability, environment), estimated S-N curve].
Notches and stress concentrations (geometric and fatigue stress concentration factor, notch sensitivity).
Designing for high-cycle fatigue [designing for fully reversed and fluctuating stresses, creating the modified Goodman diagram, an augmented Goodman diagram, applying stress concentration effects with fluctuating stresses, determining the safety factor with fluctuating stresses (case 1 for independent variation of mean and alternating stresses, cases 2, 3 and 4 for constant: alternating stress, mean stress, ratio of alternating over mean stress)].
Modelling and calculations in selected areas of machine design:
Welded connections [fusion welding, fabrication by welding, types and forms of welds (butt, fillet, plug, transverse, longitudinal, skewed), stresses in welds (eccentrically loaded welds, weld centre of gravity and moment of inertia, direct and bending shear stresses)].
Riveted connections [typical applications, materials and types of rivets and methods of riveting, types of riveted joints (lap, single strap, butt), types of welded joints failure, stresses in rivets and riveted joints (shearing and bearing condition for rivets, plates and straps, tension in a plate and a strap, shearing of
edge of plate/strap, condition for equal loading capacity of plate and straps, gravity centre of joint, direct and moment forces in joints with eccentric load]. Cemented joints. Screws and fasteners [standard thread forms and dimensions, power screws (square, acme, and buttress threads, typical applications, force and torque analysis, friction coefficient, self locking and back driving, efficiency, ball screws), stresses in threads (axial stress, shear stress, minimum nut length, torsional stress), types of screw fasteners (classification by intended use, by thread type, by head style), nuts and washers (lock nuts, lock washers, sems), manufacturing fasteners (thread cutting, thread rolling, head forming). Preloaded fasteners (preloaded bolts under static loading, bolt and clamped material stiffness, material and bolts characteristic, joint constant, safety factor against separation and against yielding). Preloaded fasteners under dynamic loading (mean and alternating stresses in a bolt, benefits of preload, determining fatigue safety factor for the bolt with the use of the Goodman diagram), determining the joint stiffness factor (confined and unconfined gaskets), controlling preload (torsional stress due to torquing of bolts), fasteners in shear (bolted and doweled eccentrically loaded joints]).

Additional remarks (by course staff):
Standard registration procedure is required. Handouts are distributed during the course. Additional materials (problems, supplements, etc) are displayed on the course website.
Sylabus

Course name: Machine Design 2
Course name in other language: MDES2
Short name: ML.ANW125
Course number: English
Course language: prof. nzw. dr hab. inż. Stanisław Bogdański
Responsible for the course:
ECTS: 3
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate weekly: [1, 1, 0, 0, 0,]
Form of grading: Exam by semester: [15, 15, 0, 0, 0,]
Field of Study: Energetyka Field of Specialization: undergraduate, full time Study level: Recommended semester: 4
Lotnictwo i Kosmonautyka undergraduate, full time 4
Mechanical Engineering undergraduate, full time 4
Mechanika i Budowa undergraduate, full time 4
Maszyn

Recommended prerequisites:

Contents - short:
To present methods of analysis and design of various important machine elements and sub-assemblies as well as to explain their role and way of functioning in machines and systems. To make an introduction to surface failure phenomena and to the tooth gears, belt and chain drives.

Bibliography:

Course results:
Completing this course should result in the following effects:
In the topic of springs and flexible elements students are expected to gain knowledge about the theory and types of springs as well as flexible elements, their typical features and applications, ways of operation, materials used for them, methods of modelling and analysis. Spring modelling and analysis for constant and variable loads and consequently determining dimensions are illustrated on tutorials with the use of typical examples. Hence, students should gain skill to calculate springs and design them for static
and dynamic loading conditions on their own. Designing flexible elements is illustrated on the example of cylindrical and block rubber cushioners.

Regarding surface failure, students are familiarised with the knowledge on main parameters of surface roughness geometry, theory of friction and wear, types of surface wear, theories of various types of concentrated contact, types and features of surface fatigue. Apart from theory, students are trained in determining the rate of abrasive wear and in calculating contact patch dimensions and contact stresses in contact couple members.

Grading criteria:
The basic points of regulations associated with grading are as follows:
1. Only the student who is registered for this course can complete it.
2. The presence at the lectures and tutorials of the course is obligatory and checked.
3. There are the two ways of completing the course:
 a). The first way is by passing the exam, which is held during the examination session. The exam consists of two parts, theoretical (5 questions) and practical (3 problems). To pass the exam it is necessary to get positive grades from both parts.
 b). The second way is by getting positive grades from all 3 tests held during the course. Moreover, the student who has got at least two positive grades from the tests has also a chance to complete the course by taking an additional test called "the improvement test".
4. "The improvement test" is organized once at the end of the semester. This test covers the whole material of the course.
5. In extraordinary cases the Head of the Fundamentals of Machine Design Department makes the decision about completing the course.
The final grade for the course is determined on the basis of the results of exam or the continuous assessment
i.e. the results from the regular and/or the improvement tests.
see: http://itlims.meil.pw.edu.pl/zpk/dla_studentow/regulaminy/machine_design_2.pdf

Detailed contents:
Springs and flexible elements: types and applications, materials used, modelling and analysis, spring index and rate, linear and non-linear spring characteristics, deflections and stresses, strength of wires used for springs, stress concentration factors, active number of coils, accumulated energy, spring ends, spring fixing and assembling, spring buckling, safety factors for springs, rubber and elastomeric cushioners, hysteresis of loading, dumping.
Surface failure: surface geometry, friction and wear, surface fatigue, spherical and cylindrical contact.
Machine sub-assemblies: sliding bearings-introduction to hydrodynamic lubrication theory, infinitely short and long bearing, load carrying capacity diagrams, design and materials used.
Rolling element bearings: types and classifications, selection- fatigue life, dynamic and static load rating, radial and combined loads, calculation procedures, bearing manufacturers catalogues, bearing mounting and sealing details, pairs of bearings, “O” and “X” bearing systems.
Shaft keys and couplings:-types of keys, stresses in key slots and stress concentration factors, calculation of keys, couplings classifications, types of rigid and compliant couplings, flexible couplings, torsional resonance of shaft and the role of torsionally flexible couplings, methods of avoiding the resonance Clutches and brakes: selection and specification, materials;
friction clutches and brakes-disk, cone clutches and brakes, multidisc clutches, uniform pressure and uniform wear approach, drum brakes and clutches, band clutches and brakes, dynamics of friction clutch engagement, model and real diagram of engagements, role of spring in clutch adjusting, heat generation and balance; overrunning and safety clutches.

Tooth gears, belt and chain drives; basic schemes, features, calculations and selection.

Additional remarks (by course staff):
Standard registration procedure is required. Handouts are distributed during the course. Additional materials (problems, supplements, etc) are displayed on the course website
Sylabus

Course name: Machine Design 3
Course name in other language: MDES3
Short name: ML.ANK365
Course number: English
Course language: prof. nzw. dr hab. inż. Stanisław Bogdański
Responsible for the course:

ECTS: 3
Course level: Intermediate
Form of grading: Exam

Number of hours: [Lc, T, Lb, P, S,]
weekly: [1, 1, 0, 0, 0,]
by semester: [15, 15, 0, 0, 0,]

Field of Study:
Lotnictwo i Kosmonautyka
Mechanika i Budowa Maszyn

Field of Specialization:
Aerospace engineering
Computer Aided Engineering_specjalność

Study level:
dergraduate, full time

Recommended semester:
5
5

Recommended prerequisites:
Engineering graphics - CAD 3 (ML.ANK432), Machine Design 2 (ML.ANW125), Manufacturing Technology 2 (ML.ANK400), Mechanics of structures 3 (ML.ANK428), Vibrations and Aeroelasticity (ML.ANK459)

Contents - short:
To supplement the material taken within MDI and MDII with the more advanced topics (listed in the course programme). To deepen the knowledge about designing for fatigue loading, designing to avoid surface failure and about tooth gears.

Bibliography:

Course results:
Knowledge about (and skills in):
- types of lubrication, HL theory with the basic, simplified Reynolds' equation for eccentric journal bearing, solutions for “short” and “long” sliding bearings;
- types of contacts, EHL theory. Knowledge and skills in the usage of specific film thickness and its influence on fatigue life. Ability to determine minimum film thickness for cylindrical contact;
- knowledge and skills in reading and using the Weibull distribution for reliability of RE bearings;
- ability to calculate and select bearings for variable loading an non standard reliabilities;
- linear cumulative damage hypothesis, ability to use it for typical failure analyses.
- ability to distinguish the complex multi axial loading cases from the simple ones and to analyse them.
-knowledge and skills in the field of dynamic contact stresses, S-N curve for surface fatigue, safety factor, designing to avoid surface fatigue failure.
-dynamic model of shaft with flexible coupling, critical speed and frequency. Ability to calculate and select the torsionally flexible coupling for power transmission system to avoid resonance.
-dynamic modelling of clutches for starting up, wear and endurance, energy balance and flow of heat. Ability to calculate and select friction disk and multidisc clutches for typical applications.
-knowledge about law of gearing, involute features, tooth loading, minimum number of teeth, technique of profile shifting. Skills in calculating parameters of spur and helical gears. Ability to determine the profile shifting coefficients to avoid undercutting and to adjust centre distances in two stage gear trains.
-skills in determining bearing reactions for spur and helical gears
-theory and design of bevel and worm gears. Ability to calculate the geometry of this type gears.
-the AGMA and ISO approaches in designing gears against tooth bending and surface fatigue failure. Ability to determine safety factors for bending and surface teeth loading.
-basic knowledge about chain and belt drives.

Grading criteria:
The final grade for the course is determined on the basis of the results of exam or the continuous assessment i.e. the results from the regular and/or the improvement tests.
The basic points of regulations associated with grading are as follows:
1. Only the student who is registered for this course can complete it.
2. The presence at the lectures and tutorials of the course is obligatory and checked.
3. There are the two ways of completing the course:
a). The first way is by passing the exam, which is held during the examination session. The exam consists of two parts, theoretical (5 questions) and practical (3 problems). To pass the exam it is necessary to get positive grades from both parts.
b). The second way is by getting positive grades from all 3 tests held during the course. Moreover, the student who has got at least two positive grades from the tests has also a chance to complete the course by taking an additional test called "the improvement test".
4. "The improvement test" is organized once at the end of the semester. This test covers the whole material of the course.
5. In extraordinary cases the Head of the Fundamentals of Machine Design Department makes the decision about completing the course.

Detailed contents:
Bearings reaction forces, bending and surface stresses in gears, AGMA* and ISO** approach and standards. Modelling of chain and belt drives, efficiency and endurance.

*AGMA – American Gear Manufacturers Association
**ISO – International Organisation for Standardisation

Additional remarks (by course staff):
Standard registration procedure is required. Handouts are distributed during the course. Additional materials (problems, supplements, etc) are displayed on the course website.
Sylabus

Course name: Machine Design 6
Course name in other language: MDES6
Short name: MDES6
Course number: ML.ANK368
Course language: English
Responsible for the course: dr inż. Jacek Gadomski
ECTS: 2
Number of hours: Lc, T, Lb, P, S,
Course level: Intermediate
Form of grading: Continuous assessment
Weekly: 0, 0, 0, 2, 0,
By semester: 0, 0, 0, 30, 0,
Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: undergraduate, full time
Recommended semester: 6
Recommended prerequisites:

Contents - short:
The design of power transmission system (among other things aircraft subassembly) at a given technical assumption. Synthesis received knowledge in accordance with the valid standards.

Bibliography:
1. Mott R.L: Machine Elements in Mechanical Design, Pearson Education

Course results:
Skills of individual designing of power transmission system. Skills of making computations, draftings and using CAD systems.

Grading criteria:
Conditions of completion of the course
1. Submitting the project documentation before deadline determined at the beginning of the semester
2. Looking over evaluated project documentation in tutor’s presence
3. Positive final grade determined by tutor

Detailed contents:
The design of power transmission system (among other things aircraft subassembly) e.g.: devices with gear or belt transmissions, part of aircraft control system or undercarriage retracting system. Among other things the design includes:
- the kinematics model
- selection of available materials
- choosing proper drive elements, couplings, bearings, joints, fasteners, seals etc.
- static and strength calculations
- the tolerance and fit analysis
- choice manufacturing technology

The project documentation is completed in the form of the engineering drawings – assembly and several components. Drawings documentation is prepared with the help of CAD system obligatory.

Additional remarks (by course staff):
max12 participants
Sylabus

Course name: Manufacturing Technology 1
Course name in other language: MTECH1
Short name: ML.ANK399
Course language: English
Responsible for the course: prof. nzw. dr hab. inż. Joanna Radziejewska

ECTS: 2
Course level: Intermediate
Form of grading: Continuous assessment
Number of hours: [Lc, T, Lb, P, S,] weekly: [2, 0, 0, 0, 0,] by semester: [30, 0, 0, 0, 0,]

Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: undergraduate, full time
Recommended semester: 3

Field of Study: Mechanika i Budowa
Field of Specialization: Computer Aided Engineering_specjalność
Study level: undergraduate, full time
Recommended semester: 3

Contents - short:
The presentation of contemporary methods of manufacturing of machines elements, devices and the structure and their influence on properties of the product, analysis of produce ability of designed products

Bibliography:
- http://www.cim.pw.edu.pl/lzp
Additional reading:
- Wit Grzesik – Advanced Machining Processes of Metallic Materials: Theory, Modelling and Application, Elsevier Science Ltd., 2008

Course results:
Ability of different goods manufacturing means selection and optimal product design in the productivity aspects. Ability of design simple basing manufacturing processes.

Grading criteria:
Short tests following every lecture and final test.
Individual work:
mainly preparing for the laboratory exercises

Detailed contents:
The technological process as the sequence of functional properties forming. Basic model of a production process. Process control and supervision
Properties of metals susceptible to plastic processing. The plastic state by principles and the possibility of a plastic deformation of metals. Properties of semi-finished products
Shaping elements by rolling, forging or pressing, die forging, extrusion, drawing, Stamping, and others. Products obtained in the rolling plastic working process, and their properties.

Foundry as one of the basic technologies for the manufacturing of objects – castings from metals and their alloys. Classification of casting application. Main processes of castings production. Casting design productivity related to the processes and quality. Preparation of molds, cores, liquid metals added tools.

Solidification, Casting production and their properties.

Types of machining processes (machine tools, machining accuracy), work-piece positioning, work-piece clamping, jigs and fixtures, dimensioning in machining operations, general rules for machining process planning, application of CNC machines and machining centers, some aspects of CNC programming, cellular manufacturing, flexible machining cells, programming of flexible robotized machining cells.

The technological process as the sequence of functional properties forming. Basic model of a production process. Process control and supervision

Properties of metals susceptible to plastic processing. The plastic state by principles and the possibility of a plastic deformation of metals. Properties of semi-finished products

Shaping elements by rolling, forging or pressing, die forging, extrusion, drawing, Stamping, and others. Products obtained in the rolling plastic working process, and their properties.

Foundry as one of the basic technologies for the manufacturing of objects – castings from metals and their alloys. Classification of casting application. Main processes of castings production. Casting design productivity related to the processes and quality. Preparation of molds, cores, liquid metals added tools.

Solidification, Casting production and their properties.

Types of machining processes (machine tools, machining accuracy), work-piece positioning, work-piece clamping, jigs and fixtures, dimensioning in machining operations, general rules for machining process planning, application of CNC machines and machining centers, some aspects of CNC programming, cellular manufacturing, flexible machining cells, programming of flexible robotized machining cells.

Sylabus

Course name: Manufacturing Technology 2
Course name in other language: MTECH2
Short name: ML.ANK400
Course language: English
Responsible for the course: dr hab. inż. Józef Zawora
ECTS: 2
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate weekly: [0, 0, 2, 0, 0,]
Form of grading: Continuous assessment by semester: [0, 0, 30, 0, 0,]

Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: undergraduate, full time
Recommended semester: 4

Field of Study: Mechanika i Budowa
Field of Specialization: Computer Aided Engineering_specjalność
Study level: undergraduate, full time
Recommended semester: 4

Contents - short:
Getting basic knowledge on the most used manufacturing processes and industrial measurement methods.

Bibliography:
3) Documentation on http://zowie.meil.pw.edu.pl

Further Readings:
1) “Manufacturing Engineering and Technology”, S. Kalpakjian, Prentice Hall 2006

Course results:
After completing this course the students will be able to render basic information on typical manufacturing processes, their applications and to measure the machined parts using various methods.

Grading criteria:
Checking students’ preliminary knowledge prior a lab class and a lab class mandatory report assessment.

Detailed contents:
Analysis of measurement errors, measurements of typical geometric features, machine parts shaping by plastic forming, bonding materials by welding, part programming for numerically controlled machine tools, abrasive machining for surface finish, metal cutting by turning and milling with cutting tool life investigation, electrochemical machining, electro-discharge machining.
Additional remarks (by course staff):
 For the quality of teaching, groups of less than 10 students are recommended
Sylabus

Course name: Materials 1
Course name in other language: MATS1
Short name: ML.ANW107
Course language: English
Responsible for the course: prof. dr hab. inż. Krzysztof Sikorski
ECTS: 2
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate weekly: [2, 0, 0, 0, 0,]
Form of grading: Continuous assessment by semester: [30, 0, 0, 0, 0,]

Field of Study: Energetyka
Field of Specialization: undergraduate, full time
Study level: Recommended semester: 1

Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: undergraduate, full time
Study level: Recommended semester: 1

Field of Study: Mechanical Engineering
Field of Specialization: undergraduate, full time
Study level: Recommended semester: 1

Field of Study: Mechanika i Budowa
Field of Specialization: undergraduate, full time
Study level: Recommended semester: 1

Field of Study: Maszyn
Field of Specialization: undergraduate, full time
Study level: Recommended semester: 1

Contents - short:
To gain fundamental engineering knowledge about various structures of engineering materials to be able to understand their mechanical properties

Bibliography:
1) Book 1: J.F. Shackelford, „Introduction to Material Science for Engineers”
2) Book 2: W. D. Callister Jr., „Materials Science and Engineering –An Introduction”
3) Documentation on http:// non

Further Readings:
- will be provided by lecturer

Course results:
After completing this course the students will have general knowledge about relations between the structure and mechanical properties of various engineering materials

Grading criteria:
100% assessment based on 4 tests
Practical work: non

Detailed contents:
Important mechanical properties of metals and polymers – definitions, measures and related most important tests. Background of material structure: crystal structures, defects and imperfections, polymer
Sylabus

Course name: Materials in Aerospace Technology
Course name in other language:
Short name: MATAERO
Course number: ML.ANK335
Course language: English
Responsible for the course: prof. nzw. dr hab. inż. Piotr Czarnocki
ECTS: 3
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate
weekly: [2, 0, 0, 0, 0,]
Form of grading: Continuous assessment
by semester: [30, 0, 0, 0, 0,]

Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: undergraduate, full time
Recommended semester: 3

Contents - short:

Bibliography:

Course results:
Acquiring skills in structural materials selection following strength, technological and usable factors, composite structures properties design, and engineers methods of their strength evaluations.

Grading criteria:
Based on tests results

Detailed contents:
2. Influence of materials on aircraft aerodynamic performance.
4. Structural materials based on aluminum, magnesium, cooper, nickel, cobalt or titanium.
6. Comparative analysis of properties of main structural materials.
7. Lightness criteria of structural materials.
8. Examples of structural designs for different materials.
13. Prognostic and evaluation of mechanical properties.
Sylabus

Course name: Mechanics 1
Course name in other language: MECHS1
Short name: ML.ANW108
Course language: English
Responsible for the course: prof. nzw. dr hab. inż. Elżbieta Jarzębowska

ECTS: 3
Course level: Intermediate
Form of grading: Continuous assessment

Number of hours: [Lc, T, Lb, P, S,]
weekly: [1, 1, 0, 0, 0,]
by semester: [15, 15, 0, 0, 0,]

Field of Study: Energetyka - undergraduate, full time
Field of Specialization: Lotnictwo i Kosmonautyka - undergraduate, full time
Study level: Mechanical Engineering - undergraduate, full time
Recommended semester: Mechanika i Budowa - undergraduate, full time
Maszyn - undergraduate, full time

Contents - short:
To learn theory and numerical problems in Statics

Bibliography:
3. Any academic textbook (engineering course) on General Mechanics, part: Statics.
For solving of problems, in addition to the above textbooks:
2. Collection of problems in mechanics, in russian, and in polish as: J. Mieszczerski: "Zbiór zadań z mechaniki, PWN, many editions; solutions to this collection … in German (author Neuber H., VEB Verlag, Berlin 1962, 1963), and in Polish as: Romuald Romicki: "Rozwiązania zadań z mechaniki zbioru J. W. Mieszczerskiego", PWN, many editions.

Course results:
After completing his course the students will be able to determine the loads of the statically determinate 3-D rigid constructions.
Grading criteria:
3 written tests during semester

Detailed contents:
Fundamental concepts and principles of statics. Equilibrium of a particle: forces in a plane and in a space. Equilibrium of a rigid body in two and three dimensions: external and internal forces, reactions and constrains, equivalent system of forces, moment of a force about a point and about an axis, reduction of a system of loads to one force and one couple (wrench). Statically determinate and indeterminate systems. Dry friction. Geometry of masses: centre of mass (gravity), areal and mass moments of inertia.
Sylabus

Course name: Mechanics II
Course name in other language:
Short name: MECHS2
Course number: ML.ANW115
Course language: English
Responsible for the course: prof. nzw. dr hab. inż. Elżbieta Jarzębowska

ECTS: 5
Course level: Intermediate
Form of grading: Exam

Number of hours: \([L_c, T, L_b, P, S,]\)
weekly: \([2, 2, 0, 0, 0,]\)
by semester: \([30, 30, 0, 0, 0,]\)

Field of Study: Energetyka - undergraduate, full time
Field of Specialization: Lotnictwo i Kosmonautyka - undergraduate, full time
Study level: Mechanical Engineering - undergraduate, full time
Recommended semester: Mechanika i Budowa - undergraduate, full time
Maszyn -

Recommended prerequisites:
Algebra z geometrią (ML.NW101), Analiza I (ML.NW102)

Contents - short:
To learn theory and numerical problems of Kinematics and Dynamics

Bibliography:
3. Any academic textbook (engineering course) on General Mechanics, parts: Kinematics and Dynamics. For solving of problems, in addition to the above textbooks:
 1. Collection of problems in mechanics, in russian, and in polish as: J. Mieszczerski: “Zbiór zadań z mechaniki”, PWN, many editions; solutions to this Collection … in German (author Neuber H., VEB Verlag, Berlin 1962, 1963), and in Polish as: Romuald Romicki: “Rozwiązania zadań z mechaniki zbioru J. W. Mieszczerskiego”, PWN, many editions.

Course results:
After completing his course the students will be able to analyse the kinematics and dynamics of the translation, rotation about a fixed axis and planar motion of a rigid body.
Grading criteria:
 3 written tests during semester, final written examination

Detailed contents:
 Kinematics (Geometry of motion): equations of motion of a particle in various reference frames. Motions
 of a rigid body: translation; rotation about a fixed axis; plane motion, including motion of a particle relative
 to a moving frame.
 Dynamics (Kinetics): dynamic equations of motion of a particle in various reference frames. Theorems
 about the rate of change of linear momentum, angular momentum, and energy of a particle, system of
 particles and a rigid body. Dynamic equations of translation, rotation about a fixed axis, and plane motion
 of a rigid body. Dynamic reactions in rotation about a fixed axis.
Sylabus

Course name: Mechanics of Flight 1
Course name in other language: Mechanika lotu
Short name: MECHFL1
Course number: ML.ANK472
Course language: English
Responsible for the course: dr inż. Zbigniew Paturski

ECTS: 4
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate weekly: [1, 0, 0, 1, 0,]
Form of grading: Continuous assessment by semester: [15, 0, 0, 15, 0,]

Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: undergraduate, full time
Recommended semester: 4

Contents - short:

Bibliography:
2. Bernard Etkin, Lloyd D. Reid: Dynamics of Flight, John Willey and Sons, 1996

Course results:
After completing his course the students will be able to estimate basic aerodynamic characteristics and performances of the airplane

Grading criteria:
60% continuous assessment based on guided projects, 40% test work.
Practical work: five (6) projects covering covering aerodynamic characteristics of airplane and basic performance of the airplane.

Detailed contents:

Additional remarks (by course staff):
!!!!!!!!!! Błędna nazwa przedmiotu

Wygenerowano z użyciem Verbis Dean's Office, www.verbis.pl
!!!!!!! Winno być (analogicznie jak dla kursu w jęz. polskim): Mechanics of Flight 1
!!!!!!! Tzw. 'treści ministerialne' nie są w jęz. przedmiotu (ang.)
Sylabus

Course name: Mechanics of Flight 2
Course name in other language:
Short name: MECHFL2
Course number: ML.ANK457
Course language: English
Responsible for the course: dr inż. Zbigniew Paturski
ECTS: 3
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate
weekly: [1, 0, 0, 1, 0,]
Form of grading: Continuous assessment
by semester: [15, 0, 0, 15, 0,]

Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: undergraduate, full time
Recommended semester: 5

Recommended prerequisites:
Mechanics of Flight 1 (ML.ANK472)

Contents - short:

Bibliography:
2. Bernard Etkin, Lloyd D. Reid: Dynamics of Flight, John Willey and Sons, 1996

Course results:
After completing his course the students will be able to estimate basic motion properties of the airplane

Grading criteria:
60% continuous assessment based on guided projects, 40% test work.
Practical work: five (5) projects covering longitudinal stability and control, and simple cases of steady and unsteady motion of the airplane.

Detailed contents:
Longitudinal aerodynamic moments acting on the airplane. Longitudinal equilibrium, static stability and control of the airplane. Center of gravity location problem. Lateral forces and moments. Lateral equilibrium, static stability and control. Introduction into dynamics of flight: simple cases of steady and
unsteady motion of the airplane. Basic natural modes of airplane (phugoid, short period, and Dutch-roll oscillations).

Additional remarks (by course staff):

!!!!!!!!! Błędna nazwa przedmiotu
!!!!!!!!! Winno być (analogicznie jak dla kursu w jęz. polskim) Mechanics of Flight 2
!!!!!!!!! Tzw. ‘treści ministerialne’ nie są w jęz. przedmiotu (ang.)
Sylabus

Course name: Mechanics of Structures 1
Course name in other language: MOS1
Short name: ML.ANW117
Course language: English
Responsible for the course: dr inż. Jakub Pawlicki
ECTS: 4
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate
weekly: [2, 1, 0, 0, 0,]
Form of grading: Exam
by semester: [30, 15, 0, 0, 0,]

Field of Study: Field of Specialization: Study level: Recommended semester:
Energetyka - undergraduate, full time 2
Lotnictwo i Kosmonautyka - undergraduate, full time 2
Mechanical Engineering - undergraduate, full time 2
Mechanika i Budowa - undergraduate, full time 2
Maszyn

Recommended prerequisites:
Mechanics 1 (ML.ANW108)

Contents - short:
To learn fundamentals of deformable bodies mechanics: stress, strain, material behavior as an introduction to structural analysis and design for static loads. Presenting concepts of statical structural analysis: equilibrium conditions, stress-strain relation (Hooke’s law) and structure deformation. Develop knowledge for strength analysis of one-dimensional structures in basic load cases: tension-compression, torsion and bending.

Bibliography:
1) Roy Craig Jr. “Mechanics of Materials”
2) John Hearn “Mechanics of Structures”
3) Documentation on http://
Further Readings:
- will be provided by lecturer

Course results:
After completing his course the students will be able to specify and implement statical equilibrium based methods to solve simple stress – deformation analysis problems for one dimensional structures.
Grading criteria:
 tests, home works, examination

Detailed contents:
Sylabus

Course name: Mechanics of Structures 2
Course name in other language: MOS2
Short name: ML.ANK427
Course language: English
Responsible for the course: dr inż. Jakub Pawlicki

ECTS: 2
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate
weekly: [1, 1, 0, 0, 0,]
Form of grading: Exam
by semester: [15, 15, 0, 0, 0,]

Field of Study: Lotnictwo i Kosmonautyka Aerospace engineering
Field of Specialization: undergraduate, full time
Study level: Recommended semester:
Mechanika i Budowa Computer Aided Engineering specjalność undergraduate, full time
Maszyn

Recommended prerequisites:
Mechanics of Structures 1 (ML.ANW117)

Contents - short:
Semi advanced knowledge for strength analysis of one-dimensional and two-dimensional structures.

Bibliography:
1) Roy Craig Jr. "Mechanics of Materials"
2) John Hearn "Mechanics of Structures"
3) Documentation on http://
Further Readings:
- will be provided by lecturer

Course results:
After completing this course students will be able to specify and implement analytical methods to solve basic and semi advanced static problems of determinate and indeterminate structures.

Grading criteria:
tests, home works, examination
Practical work:
Classes and home works where students will solve simple structure statics problems.

Detailed contents:
Sylabus

Course name: Physical Education and Sports 1
Course name in other language:
Short name: PES1
Course number: ML.ANWF1
Course language: English
Responsible for the course: mgr Bożena Gronek
ECTS: 0
Number of hours:
- **weekly:** [0, 2, 0, 0, 0]
- **by semester:** [0, 30, 0, 0, 0]
Course level: Intermediate
Form of grading: Continuous assessment

<table>
<thead>
<tr>
<th>Field of Study</th>
<th>Field of Specialization</th>
<th>Study level</th>
<th>Recommended semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energetyka</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>1</td>
</tr>
<tr>
<td>Lotnictwo i Kosmonautyka</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>1</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>1</td>
</tr>
<tr>
<td>Mechanika i Budowa Maszyn</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>1</td>
</tr>
</tbody>
</table>
Sylabus

Course name: Physical Education and Sports 2
Course name in other language: Physical Education and Sports 2
Short name: PES2
Course number: ML.ANWF2
Course language: English
Responsible for the course: mgr Bożena Gronek

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Number of hours:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[Lc, T, Lb, P, S,]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course level:</th>
<th>Number of hours:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate</td>
<td>[0, 2, 0, 0, 0,]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of grading:</th>
<th>Number of hours:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous assessement</td>
<td>[0, 30, 0, 0, 0,]</td>
</tr>
</tbody>
</table>

Field of Study:
- Energetyka
- Lotnictwo i Kosmonautyka
- Mechanical Engineering
- Mechanika i Budowa Maszyn

<table>
<thead>
<tr>
<th>Field of Specialization:</th>
<th>Study level:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>undergraduate, full time</td>
<td>2</td>
</tr>
</tbody>
</table>

Date 06.03.2019
Sylabus

Course name: Physical Education and Sports 3
Course name in other language:
Short name: PES3
Course number: ML.ANWF3
Course language: English
Responsible for the course: mgr Bożena Gronek

ECTS: 0
Course level: Intermediate
Form of grading: Continuous assessment

Number of hours: [Lc, T, Lb, P, S,]
weekly: [0, 2, 0, 0, 0,]
by semester: [0, 30, 0, 0, 0,]

Field of Study:
Field of Specialization:
Study level: Recommended semester:
Energetyka - undergraduate, full time 3
Lotnictwo i Kosmonautyka - undergraduate, full time 3
Mechanical Engineering - undergraduate, full time 3
Mechanika i Budowa Maszyn - undergraduate, full time 3
Sylabus

<table>
<thead>
<tr>
<th>Course name:</th>
<th>Physical Education and Sports 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course name in other language:</td>
<td>PES4</td>
</tr>
<tr>
<td>Short name:</td>
<td>ML.ANWF4</td>
</tr>
<tr>
<td>Course number:</td>
<td></td>
</tr>
<tr>
<td>Course language:</td>
<td>English</td>
</tr>
<tr>
<td>Responsible for the course:</td>
<td>mgr Bożena Gronek</td>
</tr>
<tr>
<td>ECTS:</td>
<td>0</td>
</tr>
<tr>
<td>Course level:</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Form of grading:</td>
<td>Continuous assessment</td>
</tr>
<tr>
<td>Number of hours:</td>
<td>[Lc, T, Lb, P, S,]</td>
</tr>
<tr>
<td>weekly:</td>
<td>[0, 2, 0, 0, 0,]</td>
</tr>
<tr>
<td>by semester:</td>
<td>[0, 30, 0, 0, 0,]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field of Study:</th>
<th>Field of Specialization:</th>
<th>Study level:</th>
<th>Recommended semester:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energetyka</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>4</td>
</tr>
<tr>
<td>Lotnictwo i Kosmonautyka</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>4</td>
</tr>
<tr>
<td>Mechanika i Budowa Maszyn</td>
<td>-</td>
<td>undergraduate, full time</td>
<td>4</td>
</tr>
</tbody>
</table>
Syllabus

Course name: Physics 1
Course name in other language: PHYS1
Short name: PHYS1
Course number: ML.ANW126
Course language: English
Responsible for the course: dr inż. Cezariusz Jastrzębski

ECTS: 3
Course level: Intermediate
Form of grading: Exam

Number of hours: [Lc, T, Lb, P, S,]
weekly: [2, 0, 0, 0, 0,]
by semester: [30, 0, 0, 0, 0,]

Field of Study: Energetyka
Field of Specialization: undergraduate, full time
Recommended semester: 6

Course results: exam

Grading criteria: To be decided later on the basis of availability of books, internet sources etc

Detailed contents:
Lecture 1
Fundamental assumptions of classical and quantum mechanics, where classical physics fails, blackbody radiation, Planck’s formula, de Broglie waves, optical spectra of light atoms, photoelectric effect.

Lecture 2

Lecture 3

Lecture 4

Lecture 5
Schrödinger equation continued. Properties of valid wave function. Time independent Schrödinger equation. Stationary states..

Lecture 6

Lecture 7

Lecture 8
Quantum numbers in spherical coordinates, principal quantum number, magnetic (azimuthal) quantum number, spin quantum number. Magnetic effects on atomic spectra –the Zeeman effect. Energy levels on electrons in atom. Optical spectra and selection rules. The role of spin.

Lecture 9

Lecture 10

Lecture 11
Quantum mechanics applications in solid state physics.

Lecture 12

Lecture 13

Lecture 14

Lecture 15

Sylabus

Course name: Propulsion Systems 1
Course name in other language:
Short name: PSYS1
Course number: ML.ANK433
Course language: English
Responsible for the course: dr inż. Paweł Oleszczak
ECTS: 5
Number of hours: \[Lc, T, Lb, P, S, \]
Course level: Intermediate
weekly: \[2, 1, 0, 0, 0, \]
Form of grading: Continuous assessment
by semester: \[30, 15, 0, 0, 0, \]

Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: undergraduate, full time
Recommended semester: 4

Recommended prerequisites:
Termodynamika I (ML.NW116P)

Contents - short:
Learning about basic kinds of aircraft propulsions. Skills in calculations of basic parameters of the aircraft engine cycle like thrust, efficiencies, fuel consumption.

Bibliography:
1) J. Mattingly „Elements of Propulsion”
2) G.C. Oates „Aerothermodynamics of Aircraft Engine Components”
3) R. Stone „Introduction to Internal Combustion Engines”
4) Documentation on http://materialy.itc.pw.edu.pl/zsl/Propulsion%20Systems%201/

Further reading:
- P. Dzierżanowski i in. „Turbinowe silniki odrzutowe”
- P. Dzierżanowski i in. „Silniki odrzutowe”
- Will be provided by lecturer

Course results:
After completing his course the students will be able to calculate basic properties of aircraft propulsion.

Grading criteria:
Two test 50% each

Detailed contents:
Sylabus

Course name: Risk and Reliability in Aviation
Course name in other language: RISKAV
Short name: RISKAV
Course number: ML.ANS611
Course language: English
Responsible for the course: prof. nzw. dr hab. inż. Marek Matyjewski

ECTS: 3
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate
weekly: [1, 1, 0, 0, 0,]
Form of grading: Continuous assessment
by semester: [15, 15, 0, 0, 0,]

Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: undergraduate, full time
Recommended semester: 5

Contents - short:

Bibliography:
Photocopies of slides from lecture or slides in pdf format.

Course results:

Grading criteria:
Two part written examination (theory and problems). Passing of all three tests during semester exempts from the examination. Two positive marks admit to a catch up test.

Detailed contents:
Concept and kinds of risk. Causes and kinds of losses in the man-technology-environment system.
Elements of probability theory: event, definitions of probability; random variable, probability density function, cumulative distribution function, moments; elements of statistics. Relationships between concepts of risk, reliability and hazard. Measures of losses, hazard, reliability and risk. Human reliability.
Sylabus

Course name: Rotorcraft Aeromechanics
Course name in other language: RAMECH
Short name: RAMECH
Course number: ML.ANS609
Course language: English
Responsible for the course: prof. dr hab. inż. Janusz Narkiewicz
ECTS: 5
Number of hours: [Lc, T, Lb, P, S,]
Course level: Advanced
weekly: [2, 1, 0, 0, 0,]
Form of grading: Continuous assessment
by semester: [30, 15, 0, 0, 0,]
Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: undergraduate, full
Recommended semester: 5

Contents - short:
Principles of vertical flight, modeling and calculation of basic performance of a single rotor helicopter.

Bibliography:
1) Done G., Balmford D.: „Bramwell's Helicopter Dynamics”, 2001
3) Documentation on http://zaiol.meil.pw.edu.pl
Further Readings:
Will be provided by lecturer

Course results:
Ability to specify and implement simple models and methods for assessment of preliminary rotorcraft performance.

Grading criteria:
Three tests (75%) and one project (25%).
Practical work: During tutorials students will practice knowledge acquired on lectures.

Detailed contents:
Sylabus

Course name: Simulation of Aeronautical Systems
Course name in other language: SAS
Short name: SAS
Course number: ML.ANS614
Course language: English
Responsible for the course: dr inż. Maciej Zasuwa

ECTS: 3
Number of hours: [Lc, T, Lb, P, S,]

Course level: Intermediate
weekly: [0, 1, 0, 1, 0,]
Number of hours: [0, 15, 0, 15, 0,]

Form of grading: Continuous assessment
by semester: [0, 15, 0, 15, 0,]

Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: undergraduate, full time
Recommended semester: 6

Recommended prerequisites:
Aeronautical Systems 1 (ML.ANK467), Aeronautical Systems 2 (ML.ANK458)

Contents - short:
to acquire practical skills of creating simulation software, related to operation of selected on-board aircraft systems

Bibliography:
• general literature on programming theory
• general literature on programming in Matlab / Simulink
• books / manuals of selected aeronautical system

Further Readings:
• will be provided by lecturer

Course results:
After completing the course students will be able to use and create simulation tools in various fields of technology.

Grading criteria:
Final mark based on:
• test in writing
• assessment of students’ projects

Detailed contents:
Introduction to programming in Matlab and Simulink software. The architecture of the simulation software. Mathematical models of selected aeronautical systems and components (sensors, controllers and actuators: electric motors, hydraulic and mechanical components, etc.). Introduction to real-time simulation, program optimization, verification and validation.
Individual supervised project - simulation of selected aeronautical system or component.
Sylabus

Course name: Simulators
Course name in other language:
Short name: SIMU
Course number: ML.ANS627
Course language: English
Responsible for the course: dr inż. Maciej Zasuwa

ECTS: 2
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate
weekly: [1, 1, 0, 0, 0,]
Form of grading: Continuous assessment
by semester: [15, 15, 0, 0, 0,]

Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: undergraduate, full time

Recommended semester: 7

Recommended prerequisites:
Aeronautical Systems 1 (ML.ANK467), Aeronautical Systems 2 (ML.ANK458)

Contents - short:
to make students familiar with the base principles of simulators design in aeronautics and other fields of technology

Bibliography:
• none
Further Readings:
• will be provided by lecturer

Course results:
After completing the course students will be familiar with modern simulator technology, having background for design of simulators.

Grading criteria:
one final test

Detailed contents:
in cockpit, flight control systems, force feedback systems. Simulation models of mobile platforms. Sound effects generation. Simulation sickness. Demonstration of available simulator.
Course name: Spacecraft Design
Course name in other language: SD
Short name: SD
Course number: ML.ANS630
Course language: English
Responsible for the course: dr inż. Arkadiusz Kobiera
ECTS: 1
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate weekly: [1, 0, 0, 0, 0,]
Form of grading: Continuous assessment by semester: [15, 0, 0, 0, 0,]
Field of Study: Lotnictwo i Kosmonautyka
Field of Specialization: Aerospace engineering
Study level: Recommended semester:
undergraduate, full time 5
Recommended prerequisites:
Astronautyka (ML.NK468)

Contents - short:
To learn about basic requirements and technologies used in design of spacecraft.

Bibliography:
1) D. Darling „The Complete Book of Spaceflight”,
2) P. Fortescue, J. Stark, G. Swinerd “Spacecraft Systems Engineering”,
3) Documentation on http://
Further Readings:
- Popular science books and journals
- Will be provided by lecturer

Course results:
Student should be able to describe requirements and proper technologies for specified types of space missions.

Grading criteria:
100 % final essay/project
Practical work: e.g., conceptual project of spacecraft

Detailed contents:
Specifics of space flight, basic subsystems of spacecrafts, artificial satellites, space probes, spacestations, maned spacecraft, spaceplanes
Syllabus

Course name: Structure and Assembling of Airframe

Short name: STRA

Course number: ML.ANK401

Course language: English

Responsible for the course: prof. nzw. dr hab. inż. Piotr Czarnocki

ECTS: 2

Number of hours: \[Lc, T, Lb, P, S, \]

Course level: Intermediate

weekly: \[2, 0, 0, 0, 0, \]

Form of grading: Continuous assessment

by semester: \[30, 0, 0, 0, 0, \]

Field of Study: Lotnictwo i Kosmonautyka

Field of Specialization: Aerospace engineering

Study level: undergraduate, full

Recommended semester: 6

Contents - short:

Bibliography:
1. "Tooling for aircraft and missile manufacture", ed. F.W. Willson
2. Flake Campbell Jr, "Manufacturing Processes for Advanced Composites"

Course results:
Umiejętność, w podstawowym zakresie, projektowanie lotniczych wyrobów kompozytowych, projektowania oprzyrządowania produkcyjnego do ich wykonania. Znajomość technik wytwarzania i łączenia stosowanych w produkcji kompozytowych elementów płatowca. Umiejętność przeprowadzenia podstawowej analizy wytrzymałościowej struktury kompozytowej.

Basic knowledge concerning design of composite airframe parts, design of manufacturing processes and tooling. Basic knowledge about, joining methods applicable for composite structures. Ability to carry out basic stress analysis of composite airframe parts.

Grading criteria:
Final mark results from the project evaluation.

Detailed contents:

Tolerance requirements for an external geometry of airframe. Assembling methods. Flow charts

Assembling fixtures and jigs. Fixing airframe parts. CMMs (mechanical docks). Traditional optic methods: use of autocollimators and transits. Optical docks. Mock-ups. types of mock-ups and their application for
tooling and assembling of jigs and fixtures. Interchangeability of main airframe components. Application of mock-ups for jigs and fixture assembling.

Alignment of airframe main components and final check of geometry.

Additional remarks (by course staff):
Sylabus

Course name: The Wittgensteins Philosophy_Ethics
Course name in other language:
Short name: WITT
Course number: ML.ANW103
Course language: English
Responsible for the course: prof. dr hab. Marek Maciejczak
ECTS: 2
Number of hours:
Course level: Intermediate
weekly: [2, 0, 0, 0, 0,]
Form of grading: Continuous assesment
by semester: [30, 0, 0, 0, 0,]

Field of Study: Energetyka
Field of Specialization: undergraduate, full time
Study level: Recommended semester: 1

Lotnictwo i Kosmonautyka
Mechanical Engineering
Mechanika i Budowa
Maszyn
undergraduate, full time
undergraduate, full time
undergraduate, full time
undergraduate, full time

Contents - short:
The course on philosophy it is an introduction to analytical philosophy. Its scope is critique of language. To understand how language works means to know better the nature of thoughts, i.e. mind. Wittgenstein’s theory of linguistic meaning seems to be the eminent example of that current of thought. Besides of language, Wittgenstein’s ideas on Mathematics, Ethics, Religion and Society are taken into account.

Bibliography:

Course results:
After completing this course students should be able to work on their personal development by means of philosophical ideas.

Grading criteria:
There are 3 criteria: essay on chosen philosophical issues - presented and discussed in the class, presence on lectures nad taking part into discussion.

Detailed contents:
1. Introduction to philosophy

Wygenerowano z użyciem Verbis Dean's Office, www.verbis.pl
2. Wittgenstein - person and life
3. Tractatus logico-philosophicus on language
4. Ethics in Tractatus
5. Wittgenstein's experiences during the First World War
6. The lecture on Ethics
7. Examples of ethical problems
8. Anthropological method in philosophy
9. Language games, meaning as use
10. Religious beliefs
11. Culture and value
12-15 Students essays and discussions

Additional remarks (by course staff):
Sylabus

Course name: Thermodynamics 1
Course name in other language: THERM1
Short name: THERM1
Course number: ML.ANW116
Course language: English
Responsible for the course: prof. dr hab. inż. Piotr Furmański

ECTS: 5
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate
weekly: [2, 2, 0, 0, 0,]
Form of grading: Exam
by semester: [30, 30, 0, 0, 0,]

Field of Study: Energetyka
Field of Specialization: - Study level: undergraduate, full time Recommended semester: 2
Lotnictwo i Kosmonautyka - undergraduate, full time 2
Mechanical Engineering - undergraduate, full time 2
Mechanika i Budowa Maszyn - undergraduate, full time 2

Recommended prerequisites:
Analiza I (ML.NW102)

Contents - short:
Knowledge of basic laws governing energy conversion. Ability to apply energy and entropy balances to analysis of different processes, in which simple substances take part. Ability to determine quality of different energy conversion processes. Knowledge of the fundamentals of thermodynamics applied to combustion processes.

Bibliography:
2) Materials for students placed on website

Course results:
To solve problems in energy conversion in different applications using laws of thermodynamics

Grading criteria:
4 tests, practical and theoretical exams, point system

Detailed contents:
Lecture:
1. Thermodynamic system and its properties, thermodynamic functions, irreversible and reversible transformations, microscopic and macroscopic energy, internal energy.
2. Energy interactions (work, heat, energy exchange accompanying mass flow). Enthalpy.
3. 1st Law of Thermodynamics for open system. Special cases (closed system, steady state, cycles). Thermal efficiency of engines and Coefficient of performance (COP) for refrigerators and heat pumps.

Tutorials:
1. Examples of thermodynamic analysis of processes based on the 1st Law of Thermodynamics.
2. Determination of a system state after transformations as well as amount and form of energy exchanged between the system and the surroundings.
3. Calculation of efficiency of different engine cycles and COP of refrigerators and heat pumps.
4. Examples of thermodynamic analysis based on the entropy balance.
5. Thermodynamic transformations in systems containing incompressible substances, vapours and perfect gases.
6. Determination of an amount of air needed for combustion, composition of combustion products and the maximum temperature of combustion.
Sylabus

Course name: Vibrations and Aeroelasticity
Course name in other language:
Short name: VA
Course number: ML.ANK459
Course language: English
Responsible for the course: dr inż. Franciszek Dul
ECTS: 3
Number of hours: [Lc, T, Lb, P, S,]
Course level: Intermediate weekly: [1, 1, 0, 0, 0,]
Form of grading: Continuous assessment by semester: [15, 15, 0, 0, 0,]
Field of Study: Field of Specialization: Study level: Recommended semester:
Lotnictwo i Kosmonautyka Aerospace engineering undergraduate, full time

Contents - short:
Basic knowledge of vibrations phenomena. Basic knowledge of unsteady aerodynamics. Basic knowledge of aeroelastic phenomena. Basic competency in computational methods of vibrations and aeroelasticity.

Bibliography:
1) Osiński, J.; Teoria drgań, PWN, Warszawa, 1978
4) Documentation on http
Further Readings:
5) Wright, J., Cooper, J.E. Introduction to Aircraft Aeroelasticity and Loads, Wiley, 2007

Course results:
After completing his course student will have the basic knowledge of vibrations and aeroelasticity. He will be able to recognize various vibration and aeroelastic phenomena and implement adequate methods of analysis. He will be familiar with industrial methods of vibration and aeroelastic analysis.

Grading criteria:
Assessment based on classroom test.
Practical work: Laboratory demonstration of forced vibrations and wing flutter.

Detailed contents: