## Experimental Research of an Airfoil Cascades in Varying Air Humidity Conditions

Bartosz Olszański, M.Sc. Eng.

> Department of Aerodynamics Institute of Aeronautics and Applied Mechanics
> Warsaw University of Technology

Supervisor: prof. dr hab. inż. Jacek Rokicki
Co-supervisor: dr inż. Zbigniew Nosal

## PRESENTATION AGENDA

1. Motivation \& introduction
2. Cascade models
3. Cascade windtunnel and measurement apparatus
4. Pressure measurements \& flow visualisation analysis
5. Conclusions \& plans for future cascade research
6. Summary
7. Questions?

## RESEARCH MOTIVATION

> The deepening of knowledge of the turbomachinery flow phenomena such as boundary layer - shock wave interaction and separation shock wave pattern
> Experimental research of humidity influence on Mach number distribution over a turbine cascade blade, thus the impact of humidity on its global performance (o.e. defined as a pressure jump, loss coefficient, Mach distribution itself)
> Sensitivity study for condensation shock position and determination of favourable conditions for its occurence (minimum relative humidity value)

## CASCADE FLOW INTRODUCTION



- Viscous flow through a turbine cascade [1]
- [1] Schobeiri, M. (2005) Turbomachinery Flow Physics and Dynamic Performance

> Mollier diagram for air


## „ANSYS" CASCADE ARRANGEMENT



## VKI LS-59 CASCADE ARRANGEMENT


> Chord (c):
92,53 mm
> Spacing (s):
65,7 mm
> Throat (o):
$24,8 \mathrm{~mm}$
> Flow angle ( $\beta 1$ ): $\quad 28,5^{\circ}$
> Blade angle relative to cascade axis ( $\beta \mathrm{s}$ ): 33,3
> s/c:
0,71
> $\arccos (\mathrm{ols}):$
$67,8^{\circ}$

## CASCADE WIND TUNNEL



## CASCADE WIND TUNNEL


> Cascade wind tunnel with side plate removed

## CASCADE WIND TUNNEL


> Throat valve (outside)

> Throat valve (inside)

## APPARATUS - PRESSURE MEASUREMENTS

, 1,5 mm internal diameter elastic tubes connecting the sensor and pressure ports of model
> ESP-32HD DTC fast, piezoresistive miniature electronic differential pressure sensor consisting of an array of 32 individual channels each. Pressure range $\pm 103 \mathrm{kPa}$ (15 psid). Data acquisition frequency - 100 Hz (Maximum - 1200 Hz )
, Single DTC (Digital Temperature Compensation) Initium Data Acquisition System (10/100 Base-T Ethernet Interface)
, In-house developed LabView software package for the fast butterfly valve control, data acquisition, post-processing and data reduction of obtained results

## APPARATUS - PRESSURE MEASUREMENTS



- Pressure scanners connected to the VKI instrumented blades

> Inlet \& wake pressure taps arrangement on vis-a-vis side plate


## APPARATUS - FLOW VISUALISATION (CONTINUOUS LIGHT)


>CCD camera mounted to the Schlieren system

## APPARATUS - FLOW VISUALISATION (FLASH LIGHT)


> Photron SA-5 fast camera mounted in place of CCD camera

1 kHz repetition rate, TTL synchronization with Ministrobokin

> Ministrobokin 20 flash generator (external triggering up to 20 kHz )

> Fisher-Nanolite KL-L Flashlamp 18 ns single flash duration (25mJ)

## PRESSURE MEASUREMENTS - METHODOLOGY

Stagnation parametres ( $\mathrm{p} 0, \mathrm{TO}$ )
Static pressure (pi) data acquisition


## PRESSURE MEASUREMENTS - LOW HUMIDITY VKI LS-59 CASCADE



- Inlet Mach Number M1 in function of Exit Mach Number M2

- Inlet Mach Number M1 in function of Vacuum tank pressure p3


# HUMIDITY INFLUENCE „ANSYS" CASCADE, CONTINUOUS LIGHT 



# HUMIDITY INFLUENCE „ANSYS" CASCADE, CONTINUOUS LIGHT 



# HUMIDITY INFLUENCE „ANSYS" CASCADE, CONTINUOUS LIGHT 




## HUMIDITY INFLUENCE „ANSYS" CASCADE, CONTINUOUS LIGHT




H = 80\%
$\beta 1=33^{\circ}$, Vacuum tank $p=0.23$ bar

## PRESSURE MEASUREMENTS - LOW HUMIDITY



- $\beta 1=\mathbf{2 8}^{\circ}$, Vacuum tank $p$ influence

Legend:

> Alfa influence, Vacuum tank p=0.23 bar

## INFLUENCE OF HUMIDITY VKI LS-59 CASCADE + ADDITIONAL PLATE



Department of Aerodynamics Seminar, 10th March 2017, Warsaw

## INFLUENCE OF HUMIDITY VKI LS-59 CASCADE + ADDITIONAL PLATE



Department of Aerodynamics Seminar, 10th March 2017, Warsaw
22/27

# INFLUENCE OF HUMIDITY VKI LS-59 CASCADE + ADDITIONAL PLATE 



# INFLUENCE OF HUMIDITY VKI LS-59 CASCADE + ADDITIONAL PLATE 




## CONCLUSIONS

> Design, theoretical inlet Mach number of a cascade wind tunnel was confirmed by experiment
> Humidity negatively affects the performance of the blade cascade, mostly in the rear part of its suction surface, then the pressure drop is lower
> Notable condensation waves and reconfiguration of flow field past the throat were observed, condensation slows down the flow before the trailing edge. There was no such a distinguishable effect for purely subsonic flow.

## LESSONS LEARNED \& FURTHER RESEARCH POSSIBILITIES

- Supplementary pressure measurements for high humidity conditions, VKI LS-59 cascade to close gaps in a set of collected data
> The measurement of stagnation pressure in wake - crucial for determination of loss coefficient and proper recalculation of M2. Kulite based wake rake may give such an opportunity
> Development of integrated system for monitoring of humidity distribution inside flexible tank as well as ensuring its homogeneousness by the set of fans.


## QUESTIONS?

## Thank You for your attention!

