Advanced Computational Fluid Dynamics Training problems 2016

Jacek Rokicki

Problem 1

For the system of Partial Differential Equations:

$$
\frac{\partial u}{\partial t}+A \frac{\partial u}{\partial x}=0 \quad u=\left[\begin{array}{l}
u_{1} \tag{1}\\
\ldots \\
u_{n}
\end{array}\right], \quad A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & \ldots \\
\ldots & \ldots & \ddots & \ldots \\
a_{n 1} & \ldots & \ldots & a_{n n}
\end{array}\right]
$$

decide for which matrix A the system is hyperbolic (and why):
$\left[\begin{array}{cc}1 & -1 \\ 1 & 2\end{array}\right]$
$\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$
$\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$
$\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right]$
(2)
$\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$
$\left[\begin{array}{ll}2 & 6 \\ 1 & 3\end{array}\right]$

$$
\left[\begin{array}{lll}
3 & 1 & \\
& 3 & \\
& & 3
\end{array}\right] \quad\left[\begin{array}{lll}
3 & 1 & \\
& 2 & \\
& & 3
\end{array}\right]
$$

(3)

Problem 2

Suppose that the matrix A is diagonalisable. Prove in elementary manner that

$$
\begin{equation*}
\sin (2 A)=2 \cos (A) \sin (A) \tag{4}
\end{equation*}
$$

Show also that $f(A) \cdot g(A)=g(A) \cdot f(A)$ for arbitrary scalar functions $f(x), g(x)$.

Problem 3

For a given PDE system, find a solution for $t>0$

$$
\left\{\begin{array}{c}
\frac{\partial u}{\partial t}+\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right] \frac{\partial u}{\partial x}=0 \tag{5}\\
u(x, t=0)=\left[\begin{array}{c}
\sin (x) \\
0
\end{array}\right]
\end{array}\right.
$$

Problem 4

For a given nonlinear scalar equation, identify how long the solution will remain continuous and in which place discontinuity will appear

$$
\left\{\begin{array}{c}
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(-2 u^{2}\right)=0 \tag{6}\\
u(x, t=0)=f(x) \equiv\left\{\begin{array}{cl}
0 & \text { dla }|x|>1 \\
1+x & \text { dla } x \in\langle-1,0\rangle \\
1-x & \text { dla } x \in\langle 0,1\rangle
\end{array}\right.
\end{array}\right.
$$

Problem 5

For a previous equation, find the solution at time $t=1 / 8$ for the different initial conditions below:
a) $f(x)= \begin{cases}1, & |x|<1 \\ 0, & |x| \geq 1\end{cases}$
b) $\quad f(x)= \begin{cases}3, & |x|<2 \\ -1, & |x| \geq 2\end{cases}$

Problem 6

For a given, nonlinear Boundary Value Problem propose iterative algorithm basing on the method of quasi-linearization, i.e., Newton's method
a) $\left\{\begin{array}{c}u_{x x}+\left(u_{x}\right)^{3}-\left(1+u^{2}\right) u=0 \\ u(0)=0 \\ u(1)=1\end{array}\right.$
b) $\left\{\begin{array}{c}\operatorname{div}(\lambda(T) \operatorname{grad}(T))=0 \text { on } \Omega \\ \left.T\right|_{\partial \Omega}=g\end{array}\right.$

Where $\lambda(T)$ is a known function of T only (e.g., $\lambda(T)=e^{T}$), while function g is known on the boundary $\partial \Omega$.
c) $\left\{\begin{array}{c}u_{x x}-u=0 \\ u(0)=1 \\ u(2) \cdot u_{x}(2)=3\end{array}\right.$
d) $\left\{\begin{array}{c}u^{\prime \prime \prime}+u u^{\prime}=0 \\ u(0)=u^{\prime}(0)=0 \\ u^{\prime}(10)=0\end{array}\right.$

Problem 7

For a given matrix $A \in \mathbb{R}^{N \times N}$

$$
A=\left[\begin{array}{ccccc}
4 & 1 & & & \tag{7}\\
1 & 4 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & 4 & 1 \\
& & & 1 & 4
\end{array}\right]
$$

a) What are eigenvalues and eigenvectors of A
b) What is the value of $\|A\|_{2},\|A\|_{1},\|A\|_{\infty}$,
c) What is the value of $\left\|A^{-1}\right\|_{2}$
d) Is the Jacobi iterative method convergent for the system $A u=f$ - provide the proof basing on the value of $\|\cdot\|$ for the suitable matrix.
e) How many iterations are necessary to reduce the solution error by a factor of 100 (as a function of matrix size N).

Problem 8

Suppose that the matrix A is diagonalisable and positive. Propose, basing on the Newton's method, an iterative algorithm to find $B=\sqrt{A}$ (do NOT assume that you actually know the eigenvectors and the eigenvalues). The algorithm must consist of elementary operation on A and $A^{-1}\left(+,-,^{*}\right)$ only.

