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TWO AND THREE- DIMENSIONAL LINEAR ELASTOSTATICS
The finite elements of trusses and beamsdare to specific assumptions and simplificationse —dimensional. All field problems
of stress analysis are in fact three-dimensiomasdme limited cases the mathematical descriptidgheoproblem may be formally reduced to
two dimensional models (plane stress state, plaam state, axisymmetry) or ore even one dimeradiaa discussed bef.
Consider a linearly elastic body of volu®ewhich is bounded by surfa¢e

yi

Data:
(X2) L

Q —the analysed volume (domain),
I —the boundary,

p, —boundary tractions  [N/th,
X, —body forces [N/.

Ui, Ty, &5 _ _
prescribed displacements on on the part
of the boundary’
Unknown internal fields:
u, —displacement field,
&; — strain state tensor,
X (x1)

Uij — Strss state tensor,
Z (Xs)

The body is referred to a three (or two) dimendiomatangular, right-handed Cartesian coordingstesnxi , i=1,3 (or X,y,z). The body is in
static equilibrium under the action of body foréesn Q, prescribed surfacetractionsp; andprescribed displacements uion on the
boundaryl” The three unknown internal fields atfisplacements ui, strains &; andstresses ;. All of them are defined ir.
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Component notation (Einstein indicial notation) for Cartesian tensors

The notation is used in rectangular Cartesian ¢oates. In this notation, writing is equivalent to writing the three componemtsu,, us of the
displacement field.

The Einstein summation convention is a tensor ftawhich is commonly used to implicitly definesam. The convention states that when an
index is repeated in a term that implies a sum allgyossible values for that index.

Three examples:

oy _ <« 0y 6u1+6u2+%
6>q i axI ox,  0X, 0%,
Ou oy Oy _0u L0y 0y
ox, | 4t ox, axln1 ox, - OX -

aj Xj=b i,j=1,n denotes the set of n linear equations

The indication of derivatives of tensors is simifilystrated in indicial notation by a comma.

af

o

The comma in the above indicial notatiodicates to take the derivative of f with respiecthe coordinateix
v 0u_ou du, o,

E les:u,, =
XAMPIES: B, — OX 0x, O0X, O0X,
Wt = ax b4 ox ax1n1 X, - OXy -

The Kronecker delté a convenient way of expressing the identitingicial notation: J; = {—10 If_fli__J }
L'

The Kronecker delta follows the rules of indexatian: A, =g, A,
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Strain state:
. . . . y} u, + 2 gy
3 extensional strains 3 shearing strains oy
= Gux = % + a&

X ax Y gy ox . u_ _ B C a—a& 5 ou,
g =% _0u, , du, < F “ "’y

Y Yoa =75 " ok D' V= ath
e = ou, v = a& auy A O

0z 2oy oz c 4,

dy
ny ) yyz, Yzx - engineering shearing strains A D v
dx

Exy: ny/ 2 )

The strains may be written in the form of symmetnigtrix assuming that

Syzz yyz/ 2 )

€= Yx/2. In this case the strains components form the symiragstrain tensor.

The components of the strain tenspare often written in the form of symmetric matrix.

Xz "

[E Xr E.Tl'

—3

£
E=1E (e El'j' E|':
lﬁ - f-: A 4 s
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T o, (&)
T
LQA 2
TXZ
( \
Oy (&y,
Ixy [ Tyx
Ox (&)
g; = 2G |: & + 1

&= (u, +uy,)

ij (Eij =E:ji )

Stress state :  stress tensor g

Constitutive equations ( 3D Hook’s law)

sxzécx—%0y+0J O, =
1 1 _
Sy:EO-y_V(O-X-i-O-Z)_ Gy_
82:3102—%0x+0y) 0,=
E1 —
YXy _ETxy
1
yyz _aryz
1
YXZ _asz
E
E-Young’s modulus, GC=——+=
2(1+v)

1

- kinematic equations

E

1+V|

E

1+V|

E
1+V

Txy :GD/xy
Tyz =G D/yz

Ty :GD/XZ

- shear modulus,

v _ \Y
——ZVd (Ekk):| Eij _E(aﬂ _mdiakkj (k= €11 +e22 te33)

v- Poisson’s ratio
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Strain energy density: 1
U =§[UX£X +0E,+O0&+T Y +T.V,+T, ), ]

U=1% gjj Ojj

Principle of the total potential energy:
V=U-W, :%jaijqde —I X.udQ —j pudl —in |
Q Q r

Matrix notation
Matrix notation is a modification of direct tenswotation in which everything is placed in matrixrfg with some trickery used if need be. The
main advantages of the matrix notation are hisébrcompatibility with finite element formulationand ready computer implementation in

symbolic or numeric form.
The representation of scalars, which may be vieagd x 1 matrices, does not change. Neither does the septation of vectors because
vectors are column (or row) matrices. Two-dimenai@mmetric tensors are converted to one-dimensional arraydishanly the independent

components (six in three dimensions, three in timzedsions). Component order is a matter of conwantut usually the diagonal components

are listed first followed by the off-diagonal conmamts.

O-X EX
Jy y
. . e g
For the strain and stress tensors this “vectodréfprocess produces the vectoss=< *+,  {e} =1 * ¢,
TXY yXY
Iy Vye
[ Y
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The relation between the strains and the displacemécomponents in matrix notation:

{exy.2)} = [RI{ux.y.2)},
[R] is called symmetric gradient matrix in the contimumechanics literature.

For 3 dimensional case :

9 0O O
0x
0
o €. 0 a_y 0
g, &, o 0 9 J y
g, g, 0z "
o= ! {5}: ! [R]: 0 0 ! {u}: uy =Y
& Yy — oo O u W
z'yz yyz ay 0X z
sz yzx 0 i i
0z oy
9 o 9
| 0z OX |
In 2D case
9 9
o, gx [9)4 J
_ _ d —
o=lot {g=5 [0 2| {u}—{u}
Loy o]
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Hook’s law:
1-v| v 0 0 0
1-v 0 0 0
Y v |1-v 0 0 0
— _ E o o o2 o 0
{U}—[D]{f}, [D]—m 2 —
0 0 0 0 |—— 0
2
0 0 0 0 0 1=
2
Plane stress state(UZ =0,7,=0,7, = 0) Plane strain state(&‘Z =0,),,=0,), = 0)
e 1|{v| O £ 1-v| v 0
[Pl=—z|v[1] O [ ]=m v {1-v O}
1-v 0 o | —=%
0|0 > 2
Strain energy density
U'=2e {0}
2
= -1 d d d
Total potential energy : v=U _WZ_EJLEJ{U} Q_J.I_XJ{U} Q‘“_DJ{U} r
Q Q r
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Finite element method for 2D and 3D problems of thay of elasticity:

LE
The domain Q is divided into the subdomains (finite elemen): Q= UQi QNQ;=0 I £ ]

\%
2D elements L

ADNTOR

6DOF 12DOF 8DOF 16D

w

3D elements

2 O 60

12DOF 24DOF 24DOF  60DQF

2D and 3D finite elements

Displacement field over the element is interpolated from the nodal displasement
{u =[N y.2)] {d}..

where{q}. - nodal displacements vectoN] - shape functions matrix.

For example for the simplest trangular element with 3 nodes and 6 DOF the relation is
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where N are the linear functions

{U(X, y)}{Nl(X, y) 0 Nyxy) 0 Nyxy) 0 } u,
v(xy) 0 Ny 0 Ny) 0 Ny&y)

Shape functions N are usually polynomials defined in local (element) coordinate systems.
Displacements, strains and stresses within each elemedéfared as the functions of the coordinates of the considered pointhemddal

displacements

{u} = [N]{d},.

{} = [R]{u} =[R][N]{q},=[B]{d},, [B]- strain-displacement matrix
{0} = [D]{<} =[D][B]{d}..

The strain energy of the eleméntis:

U= [Le){e} a0,

U,=3 [laL (el [0] [8] {400, U.=[ald.{d.
Where

[K], =J[B]T[D][B]d9e = [[87]do,,
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is calledthe stiffness matrix of the element(symmetrical, singular, semi-positive defined) with the rargeleto the number of DOF of the
element. Matrix [B] depends on the position within the element so the integratioreseitpai special numerical techniques.

Total strain energy of the structure is the sum of the finite elementgyener

LE
U= Zue . (LE- number of finite elements in the model)

e=1

1
Using the global nodal displacement vector {q} U= E'_CIJ [ K] {CI} :

Ixn  nxn nx1l

where n is total number of DOF of the model a[iﬁd is the stiffness matrix of the model.

The next step in FEM algorithms is finding the equivalent nodal forces {F} correspaodimg distributet loads {p} and {X}.

The total potential energy of the model is:

1
v=U-w,=Z|a][K[{q-[afF}
Ixn nxn nx1 Ixn nx1
The minimum is determined by the conditions
LA
daq ,

[K]{C]} = {F} : (to be solved using neccesary displacetembdary conditions)

The strain and stress components in each finiteexié are found using the relations
{e}= [Bl{d},, {g}=[D]{s} =[D][B]{d},

10



