
 

 

 

FLUID MECHANICS 3 - LECTURE 2 

 

STEADY GAS FLOWS IN DUCTS WITH 

VARIABLE CROSS-SECTIONS 
 

 

 

 

 

 

 

 



 

Consider the stationary gas flow through the variable-section duct (see figure) 

 

 

 

 

 

 

 

 

We assume that the relative rate of change of the cross-section area along the duct is small 
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Consequently,  the flow predominantly unidirectional. It means that  
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Flow is assumed adiabatic and continuous, hence it is isentropic. 

 



 

The mass flow rate is constant 

 

( ) ( ) ( )mQ x u x A x const   

 

The mass balance can be written by referencing (real or hypothetical) critical cross-section. 
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The ration between local section area ( )A A x  and the area of a critical section A   can be 

expressed as follows 
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The explicit form of this relation is 
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Analysis of the above relation leads to the following observation 
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In words:   

 subsonic flow speeds up in the convergent channel and slows down in a divergent channel 

 supersonic flow slows down in the convergent channel and speeds up in a divergent 

channel 

 

 

 

 

 

 

 

 



 

Flow  through convergent nozzle 

 

The outlet pressure: 
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Critical parameters are achieved at the outlet section if  
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Consider the mass flow ( )m outQ uA .  It can be expressed as follows   ( 0contT T ) 
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Consider the suction of the gas from free atmosphere to a low-pressure container. The gas flows 

into the container via the converging channel.   

 

This time, the external pressure plays the role of the 

total (stagnation) pressure 0p . While the pressure in 

the container diminishes, the flow rate rises until the 

critical conditions are achieved in the outlet (or rather 

inlet) section. Further decrease of the contained 

pressure cannot affect further the external part of the 

flow (no information about what happens inside the 

container can reach the external flow) 
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Flows through Laval (converging-diverging) nozzle 

 

 

 

 

 

 

 

 

 

 

Two “extreme” cases of flow: 
 

Case 1 
 

Flow accelerates in the converging part (confusor) and reaches critical conditions at the throat 

(where minA A ) . Then, inside the diverging part (diffusor) the flow slows down to subsonic 

conditions. At the outlet section the Mach number is smaller than unity and the outlet pressure 

matches exactly the external pressure. 

This may happen only when the  
1ext contp p  ratio has precisely selected value (typically 

only slightly smaller  then 1). 

 



The procedure to find the value of  
1ext contp p : 

1. Calculate the geometric ratio minoutA A  .  Since the critical Mach number ( 1M  ) is 

attained at the throat of the nozzle, this ratio is equivalent to outA A . 

2. Use plot ( )A A f M

  to read the subsonic value of the Mach number corresponding to 

minoutA A A A

  

3. Use plot 
0

( )p p g M  to find the ratio 1( ) ( )ext outcont
p p g M . Here, we use the fact 

that ext outp p   

 

Case 2: 
 

Flow accelerates in the converging part (confusor) and reaches critical conditions at the throat 

(where minA A ) . Then, inside the diverging part (diffusor) the flow continues to accelerate 

reaching supersonic condition.  At the outlet section the Mach number reaches its maximal 

value (larger than 1).  
 

Outlet pressure does not necessarily matches the external pressure. If it does, we say that the 

nozzle works in the design mode. This may happen only when the  
2ext contp p  ratio has 

precisely selected value (typically  much smaller  then 1). 
 



 

The procedure to find the value of  
2ext contp p : 

1. Calculate the geometric ratio minoutA A  .  Since the critical Mach number ( 1M  ) ia 

attained at the throat of the nozzle, this ratio is equivalent to outA A . 

2. Use plot ( )A A f M

  to read the supersonic value of the Mach number corresponding to 

minoutA A A A

  

3. Use plot 
0

( )p p g M  to find the ratio 2( ) ( )ext outcont
p p g M . Here, we use the fact 

that – in the design mode - ext outp p . 

 

Note that typically                      1 2( ) ( )ext extcont cont
p p p p  

 

 

 

 

 

 

 

 

 

 



What happens if  11 ( )ext extcont cont
p p p p   ? 

 

The answer is easy – the flow in the whole nozzle is entirely subsonic, i.e., the Mach number 

does not reach the value of 1 even at the throat!  

Assume that an actual value of ext cont
p p  is given. How to calculate maximal value of the 

Mach number in such conditions? 
 

1. First, knowing this pressure ratio and using isentropic pressure relation 
0

( )p p g M  for 

extp p  and 0 contp p  we find the outlet Mach number outM .  

2. Next, knowing  1outM   we determine the value of  ( )out outA A f M

 . Note that here 

the symbol A refers to “hypothetical” (meaning, non-existing in the actual flow conditions) 

cross section where the critical conditions are achieved. Obviously, minA A  ! 

3. Then, we calculate the ratio  
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and find the value of the throat Mach number using again the relation min ( )throatA A f M

 . 

For typical geometries the interval 11 ( )ext extcont cont
p p p p   is actually very small. 

 



 

What happens if the pressure ratio is very small, i.e. smaller than  
2ext contp p ?   

 

In such circumstances the supersonic flow in the diffusor does not have sufficient space to 

decompress to external pressure ! It means that out extp p  and further decompression takes 

place in the open space beyond the nozzle’s exhaust.  We say that the nozzle is “too short”. The 

calculations of any gas dynamic parameters inside the “too-short” nozzle do not differ from the 

case of the “design mode”. 

 

 

 

 

 

 

 

 

 

 

 



 

What happens if the pressure ratio is    
1 2ext cont ext cont ext contp p p p p p  ? 

 

Let us finally consider the situation when the pressure ratios lay within the wide range of 

pressure ration between  
2ext contp p  and   

1ext contp p .  Since at the borders of this range 

the flows in diffusor are quite different something interesting must happen! 

 

Consider first the situation when the ratio ext contp p  is only slightly larger than  
2ext contp p . 

Now, the outlet pressure outp  becomes slightly smaller than the external pressure extp . Thus, 

the gas must be compressed a little in the stream outside the exhaust.  

 

Since the outflowing stream is supersonic such compression cannot be achieved “smoothly” – 

some pattern of shock waves must appear!  We will leave a more detailed analysis of such 

patterns  of external shock wave systems for later.  The key point is that at precisely determined 

pressure ratio the normal shock will appear at the outlet section. With a further reduction of the 

pressure ratios, the NSW  moves inside the diffusor (see the figure). 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Different patterns of flow through the Laval nozzle 
 

 

                          (a)                                                     (b) 

 

                         (c)                                                     (d) 
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                         (f)                                                                   (g)                                                                        (h) 

 



Distribution  of selected parameters along the Laval nozzle flow with the internal NSW 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


