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1. Reynolds-averaged Navier-Stokes equations 
 

The discussion of the Reynolds or time-averaged Navier-Stokes (RANS) equations and 
turbulence transport equations is limited to the constant-density (incompressible) 
fluids. A linear relationship is assumed between the components of the stress and 
deformation tensors. An extension to compressible fluids is straightforward and can be 
found in many textbooks (see for instance Wilcox, 2006, 2008). In case of compressible 
fluid one has to apply the Favre-averaging (density-based averaging) instead of 
mentioned Reynolds-averaging to allow for some simplifications in the mass and 
momentum conservation equations. 

 For incompressible fluid, the instantaneous velocity component )t,(ui x can be 

written as the sum of a mean )(u i x  and a fluctuating part )t,(ui x

 

(fig. 1): 

 

     t,uut,u iii xxx   (1.1)

 

where the mean velocity is defined as the time-averaged value 

 

 

Fig. 1 Decomposition of the signal in mean and fluctuating components. 
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T is the averaging time interval. We assume that T. This corresponds to the steady 
RANS model. For time-accurate RANS (called URANS) this time interval has to be 
sufficiently large with respect to the time scale T1 of the turbulent fluctuations (fig. 2) 
and small with respect to the time scale T2 of large scale unsteadiness. So for time-
accurate problems Eq. (1.2) takes the form: 
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Fig. 2 Time-averaging windows. T1 – time scale of turbulent fluctuations, T2 – time scale 

of unsteady motion. The time-averaging window T should be: T1  < T < T2 

 

Two useful properties are (steady RANS): 
 

          - the time-average of a time-averaged value is again the same value (the averaged 
value   

            )(u i x is not a function of time) 
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          - and that the time-averaged value of the fluctuating part is zero 
 

     





Tt

t

iiii
T
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T

1
limu xxxxx  (1.4)

 

The other averaging properties are listed below for arbitrary quantities ,  and : 

          (time averaging is linear)     (1.5) 
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    ii xx 






 
                      (1.6) 

                                  (1.7) 

                           (1.8) 

                     0   (1.9) 

                     0   (1.10) 

0      (1.11) 

The Reynolds-averaging is linear (1.5) and it commutes with the space derivatives (1.6). 
Relations (1.7) and (1.8) come from the property (1.3). With (1.9) and (1.10) we take 
advantage of the observation that the product of mean and fluctuating quantity is zero 
because the mean of the latter is zero. The quantities  and  are correlated. It means 
the average of their product is not zero (Eq. 1.11).   

For incompressible fluid the conservation of mass and momentum equations (with 
the constitutive relation introduced already, see first lecture) are 
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(1.12) 

(1.13)

 

where  is the fluid density,  is the dynamic molecular viscosity, p is the pressure and 
Sij is the strain-rate tensor Sij=1/2(ui/xj+uj/xi).  
 
First, we average the continuity equation (1.12). Taking the property (1.6) we obtain:  
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Next, we average the momentum equations (1.13).  
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Using the property (1.5) we obtain 
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Here we assume that the time-averaging commutes with the local time derivative. We 
can see from figure 1 that for T

 

the time-derivative of  the mean velocity is zero  
 

0
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u

t

u ii 



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



                        (1.16) 
 
The convective derivative deserves attention. We average the product of ui and uj:  
 

(1.17) 
 
The second and third term on r.h.s. of eq. (1.17) cancels out (property 1.9). The last term 

is nonzero because there is some correlation between iu  and ju  fluctuating velocity 

components.  So using property (1.7) we obtain: 
 
 

 (1.18) 
 
Figure 3 shows the momentum exchange process in the shear layers of the plane jet at 
Re=20000. This example is used to illustrate a correlation between u’ and v’ fluctuating 
velocity components. Let us assume that the red fluid element (located on line R) is 
shifted to the left. This shift is visible by negative u’ fluctuating velocity component (see 
the coordinate system). Since the red fluid element is moving from the high mean 
velocity zone VR to the small mean velocity zone VL this transfer generates the positive v’ 
fluctuating velocity  
(v’=VR-VL, v’>0).  The product of these two fluctuations is negative u’v’<0. The time-
averaged product of u’ and v’ is shown in fig. 3 (bottom). This is the turbulent shear 

stress profile jiii uu  . We clearly see that the negative u’ fluctuation generates the 

positive v’ fluctuation. The momentum exchange process can also be realized the other 
way around, so from left to right (see blue fluid element located on line L). This is due to 
the fact that formation of the shear layer is typically related to evolution (in space and 
time) of the coherent vortex structures which subsequently breakdown into smaller 
forms. It means that at one time instant there is a momentum exchange from right to 
left. But at the other time instance there might be the momentum exchange from left to 
right. Let us, therefore, assume that the fluid element is shifted from left to right (blue 
contour). This shift results in positive u’ fluctuating velocity. Since the blue fluid element 
is moving from the low mean velocity zone VL to the high mean velocity zone VR this 
transfer generates the negative v’ fluctuating velocity (v’ =VL-VR, v’<0).  The product of 
these two fluctuating velocities is, again, negative u’v’<0. It means that it leads to 
generation of the negative shear stress after time averaging (fig. 3 bottom).  

The Reader can perform a similar analysis for the right part of fig. 3. The result of this 
analysis will be a formation of the positive shear stress profile (fig. 3, bottom). The sign 

   jijijijijjiiji uuuuuuuuuuuuuu 

jijiji uuuuuu 
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depends on the coordinate system. In both cases the net effect is the momentum transfer 
from the mean flow to the fluctuating flow (resulting in increased turbulent shear 
stress). But the most important remark is that in turbulent flow the momentum 
exchange in one flow direction causes the momentum exchange in the other flow 
directions (flow is three dimensional). So there is some correlation between both ui’ and 
uj’ fluctuating components. This results in the shear stress tensor (rightmost term in Eq. 
1.18).  
     Going back to the time-averaging. The terms on r.h.s. of equation (1.15) can be easily 
averaged:  
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   (1.19)

 

 
Finally, we obtain the Reynolds-Averaged Navier-Stokes (RANS) equations (eq. 1.14, 
1.18, 1.19): 
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(1.20) 

(1.21)
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(1.22) 

The last term on r.h.s of Eq. (1.21) is the divergence of the Reynolds-stress tensor. The 

components of the Reynolds –stress tensor are denoted by jiij uu  .This term 

requires closure model (see below).  
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Fig. 3.  Momentum exchange in the shear layers of the plane jet. Mean V velocity 

component (top) and the shear stress profile (bottom).  
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2. Closure of the modelled terms 

2.1. Exact Reynolds-stress transport equations 

 

If we denote by N(ui) the Navier-Stokes operator:  
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(2.1)

 

We can obtain the exact Reynolds-stress transport equation, by multiplying the 

momentum equation (2.1) by fluctuating quantity ju

 

and adding to this term a similar 

term with the indexes interchanged and averaging. The following transport equation is 
obtained (Wilcox, 2006): 
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(2.2)

 

Derivation of Eq. (2.2) is show in Appendix A. 
 
The physical meaning of the terms on r.h.s. of Eq. (2.2) can be described as follows. 

-  Production (first and second term). Turbulent stresses are generated at the expense of 

mean flow energy by mean flow deformation. This term does not need any closure. 

- The third term represents the stress dissipation which mainly occurs at the smallest 

scales (it should be modelled). 

- Pressure fluctuations (fourth term) redistribute the turbulent stress among 

components to make turbulence more isotropic.  

- Transport term (last  term in Eq. 2.2). This term consists of several parts (in square 

bracket): 

First term is the transport term and it is called the molecular diffusion. 

Second, there is the turbulent diffusion term (transport through velocity fluctuations). A 

closure model is necessary for this term. 

A third and fourth part of the transport term is the pressure transport. This term also 

needs closure model. 
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2.2 Transport equation for turbulent kinetic energy 

 

An exact equation for the turbulent kinetic energy follows from the equations for the 

Reynolds stress components (2.2) by contraction trough putting j = i and making the 

sum over i = 1,2,3:  

 
 

 

(2.3)

 

We take advantage of the continuity equation for the fluctuating velocity components.  
 

 

(2.4)

 

which means that for an incompressible fluid studied here the pressure strain-rate term 
cancels out in Eq. (2.3). We define the turbulent kinetic energy as: 
 

 

(2.5)

 

Next, by inserting Eq. (2.5) to Eq. (2.2) we obtain an exact equation for the turbulent 
kinetic energy 
 

 

(2.6)

 

In Eq. (2.6) the first term on r.h.s describes production of the turbulent kinetic energy. 
This term is modeled using the Boussinesq hypothesis:  
 

ikiktik k
3

2
S2  

 

(2.7)

 

We later write the production term as ikiktkiktk SS2x/uS2P
i

  . t in Eq. (2.7) 

denotes the turbulent viscosity (see discussion below).  
 
The second term on r.h.s. of eq. (2.6) represents dissipation of the turbulent kinetic 
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energy  
 

 

(2.8)

 

In the frame of the two-equation models discussed here the term (2.8) is obtained by 
solving an additional transport equation (discussion below).   
 
The second and third term in brackets describe the turbulent transport process by 
velocity fluctuations and the fluctuating pressure–velocity induced diffusion. Both terms 
are modeled  using the gradient hypothesis:    
 

 
(2.9)

 

where k is a certain constant. Finally, the transport equation for the turbulent kinetic 
energy reads:  
 

 

(2.10)

 

2.3. The standard k- model 

The model which is called the standard k- turbulence model was developed by Jones 
and Launder (1972). In this model, the RANS-equations are used together with the k-
equation (2.10), the -equation (introduced below) and the eddy-viscosity expression 
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requires the knowledge of the 

turbulent kinetic energy, which we can derive from equation (2.10). The second 
ingredient is the dissipation rate . Remark that we are not restricted to an equation of . 
Any quantity which is a combination of k and  may be used. The most obvious is to use 
an equation for . The expression for  is known, Eq. (2.11). So, we could use an 
approach similar to the one as used for the turbulent kinetic energy to derive a transport 
equation. Technically, this is possible, but the equation is much more complicated than 
the equation for k and contains many more terms that need modelling. So, looking at the 
k-equation (2.10) and taking into account that the parameter that we can form with k 
and  is the time scale =k/, the k-equation can be transformed into an -equation by 
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(2.11)

 

where we introduce the constants cε1 and cε2 in the transformation of the production 
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term and the dissipation term. We further introduce the diffusion coefficient  (see 
discussion latter).   

The standard values for the model parameters are: 
 
 k 1 2c 0.09, 1.0, 1.3, c 1.44, c 1.92             

The value for c comes from the observation of thin shear flows with approximate 
balance between production and dissipation: 2D free jet mixing layers and the so-called 
inertial region or logarithmic layer in a boundary layer flow. Figure 4 shows the terms in 
the turbulent kinetic energy equation (Eq. 2.6) along normal to the wall direction in the 
turbulent boundary layer at Re=1410. The results have been obtained using DNS by 
Laurent et al. (2012). The molecular diffusion is important at the wall. Both production 
and dissipation become dominant at y+>5. Note a sign change on the profiles of the 
turbulent and molecular diffusion inside the boundary layer (diffusion partly acts as a 
sink and partly as a source of the turbulent kinetic energy). This makes the production 
and dissipation far more important than the diffusion processes at sufficiently large 
distance from the wall.  Moreover, we can assume that production almost equals 
dissipation for y+>10: Pk=ε. With y as cross-stream coordinate this results in: 
 

 

2
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kk k
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 
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For thin shear flows, the experimental observation is u 'v '
( ) 0.3

k


 , resulting in c = 0.09.  

 

 

 

 

 

 

 

 

 

 
Figure 4.  Terms in the turbulent kinetic energy equation inside the turbulent boundary 
layer at Re=1410. DNS results by  Laurent et al., (2012).  
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dissipation 
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The constant 2c  is determined by considering decaying homogeneous turbulence. 

Figure 5 shows the vortex structures obtained for DNS simulation of decaying isotropic 

and homogeneous turbulence in the periodic box (Dubief i Delcayre, 2000). In this 

interesting flow the statistics of all quantities in brackets on r.h.s. of Eq. (2.6) are 

constant. This means that there is no diffusion. Moreover, the statistics of mean velocity 

derivatives are zero. It means that there is no production either. The k-equation reduces 

to 

Dk

Dt
  ,            

2

2
D

c
Dt k


 
                                             (2.12) 

 

These equations are satisfied for an observer moving with the flow by  

 

      

1nm,
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1
ndla,t,tk

2

mn 

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



  

(2.13) 

Experiments of Comte-Bellot and Corrsin (1966) indicate values n = 1.2 to 1.3 which 

implies 2c  = 1.83 to 1.77. The value 2c  = 1.92, selected by Jones and Launder differs 

somewhat because they did some numerical optimisation of this constant over a range 

of flows.  

 

Figure 5. Homogeneous and isotropic turbulence in a periodic box. (Dubief i Delcayre, 

2000) 
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The constant 1c is determined from a homogeneous shear flow experiment. Figure 6 

shows a sketch of such flow. Homogeneous shear flow appears to reach an equilibrium 

state with k and  growing in such a manner that the turbulent time-scale k/ 

approaches an approximately constant value. The governing equations are 
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  ,             1 k 2c P cD

Dt k /
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(2.14) 

which can be combined with the assumption of a constant turbulent time-scale to yield 

the following relations. Assuming D/Dt=0 we arrive at: 
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(2.15) 

which leads to  
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c 1
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
         

 

    

Using 2c  =1.83 and the shear flow data of Tavoularis and Corrsin (1981), where 

kP / 1.8   and k /   constant, the value 1c 1.46   results. Again, Jones and Launder 

take the somewhat different value 1c 1.44   by numerical optimisation.  

 
 

 

Figure 6. Flow in 2D mixing shear layer 
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The diffusion coefficient σk is a priori taken to unity, since it governs the turbulent 
diffusion of the turbulent kinetic energy by the turbulent motion itself. 

The second diffusion coefficient σε comes from consideration of the diffusion of ε in 
the logarithmic zone of the boundary layer. The following equations can be written in a 
zero pressure gradient boundary layer flow: 
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In the log-layer,  

udu

dy y




          (2.19) 

From Eq. (2.16) and (2.19) we obtain 

yut               (2.20) 

If we assume Pk= and the constant k-profile in the logarithmic part of the turbulent 

boundary layer (no diffusion of k) Eq. (2.10) reduces to:  
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Taking the definition of the dynamic turbulent viscosity 


 
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k
C  and introducing it 

into Eq. (2.16) we obtain:  
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Introducing Eq. (2.19), (2.21), (2.22) and 


 

2

t

k
C  into Eq. (2.18) we obtain:  

3 2 6 3

1 22 2 2 2 2
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1 22 2
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1 2 2 2
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y y( y) ( y)

c 1 1
(c c ) u

( y) y
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  

 

    
 


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  



 
     

      


   

  

 
   
  

 

This results in  

 
2

2 1(c c ) c


  


 


  (2.23) 

In standard k-, the values 1c  = 1.44, 2c = 1.92, c = 0.09 and  = 1.3 are used, which 

following (2.23) implies  = 0.43, which is a somewhat larger value than what is usually 
assumed for the Von Karman constant ( = 0.40-0.41). Again, this difference comes from 
the numerical optimisation by Jones and Launder.  

One of the shortcoming of the standard k- model is its inability to reproduce a 
correct level of the turbulent shear stress in the near-wall region. Figure 7 shows the 
predicted by the k- model (dashed line) and computed using DNS (solid line) profiles of 
the turbulent viscosity inside the boundary layer for simulation of the channel flow. As 
shown the k- model overestimates the turbulent viscosity in the near-wall region. In 
order to limit this shortcoming some damping terms are employed in front of the eddy-
viscosity formula. The other approach consists in using separate turbulence model, 
which shows better performance than the classic k- model in the near-wall region, and 
its blending with standard k- further away from walls. This obviously complicates the 
modeling approach using the standard k- model.      
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Figure 7.  Predicted using the k- model (dashed line) and computed using DNS (solid 
line) profiles of the turbulent viscosity inside the boundary layer for simulation of the 
channel flow at Re=590. Durbin and Pettersson Reif, (2003). 
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Appendix A 

 

Multiplying Eq. (2.1) by the fluctuating velocity ju

 

  and adding this term to a similar 

term with the indexes interchanged and averaging we obtain:  
 

 

(A.1)

 

 
After some algebra we obtain:  

 

(A.2)

 

Assuming the Reynolds decomposition (mean plus fluctuation):  

 

(A.3)

 

and putting Eq. (A.3) to (A.2) we obtain several terms which are discussed below: 

1. Local time derivative 
 

 

(A.4)
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The property (1.10) was used in order to simplify Eq. (A.4) (second line).  The following 
relation was used to derive the last term in Eq. (A.4) 
 

 

(A.5)

 

2. Convective term 

 

(A.6)

 

3. Pressure gradient term 

 

(A.7)

 

4.  Viscous term 

 

(A.8)

 

Finally, putting Eq. (A.4), (A.6), (A.7) and (A.8) to Eq. (A.2) we obtain the exact form of 

the Reynolds-stress equation: 



Turbulence Modelling  Sławomir Kubacki 

 

21 

 

 

(A.9)

 

Note that Eq. (A.9) can be rewritten in the form given by Eq. (19) using the following 

relations: 

 

(A.10)

 

 


