
Application of Gaussian Processes in
Uncertainty Quantification and Optimisation

Krzysztof Marchlewski, Łukasz Łaniewski-Wołłk, Jacek Rokicki

Warsaw, November 2017

The Faculty of Power and Aeronautical Engineering
Warsaw University of Technology



Uncertainty Quantification



UQ | What the uncertainty is?

It is a lack of knowledge about model parameters and the
model itself.
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UQ | Sources of the uncertainties

• Manufacturing process (e.g. errors in geometry, material
properties, . . .).

• Operating conditions (e.g. geometry deformation due to
loads, bird strike, . . .)

• Input data (e.g. air density value, velocity value, . . .).

• Model itself (e.g. simplifications in modeling resulting from
simulation cost, . . .).

• Output data (e.g. unconvered results, . . .).

• External changes in a design.
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UQ | Effects of the uncertainties

Question
Is it to safe to ignore uncertainties?

Answer
Like always – it depends.
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UQ | Effects of the uncertainties I

Fig. 1: The effect of the variables uncertainty. 4



UQ | Effects of the uncertainties II

Fig. 2: The effect of the variables uncertainty. 5



UQ | Effects of the uncertainties III

Fig. 3: The effect of the variables uncertainty. 6



UQ | Effects of the uncertainties IV

Fig. 4: The effect of the variables uncertainty. 7



UQ | Effects of the uncertainties V

Fig. 5: The effect of the variables uncertainty. 8



UQ | Effects of the uncertainties VI

Fig. 6: The effect of the variables uncertainty. 9



UQ | Effects of the uncertainties VII

Fig. 7: The effect of the variables uncertainty. 10



UQ | Effects of the uncertainties VIII

Fig. 8: The effect of the variables uncertainty. 11



UQ | Effects of the uncertainties IX

Fig. 9: The effect of the variables uncertainty. 12



UQ | How we actually quantify the Uncertainties?

1. Obtain an unknown function f (x)

2. Calculate a mean function: fu(x) = EΞ (f (x + Ξ)), where Ξ

is a random error and EΞ means expected value.
3. Choose a probability density function g(ξ) describing the

random error Ξ.
4. Use the function to calculate

fu(x) =

∫
f (x + ξ)g(ξ)dξ = (f ∗ g) (x)

5. Calculate a variance of the function f (x):

σ2
u(x) = VarΞ (f (x + Ξ)) =

=

∫
f 2(x + ξ)g(ξ)dξ −

(∫
f (x + ξ)g(ξ)dξ

)2

=

=
(

f 2 ∗ g − (f ∗ g)2
)

(x)
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UQ | How we actually quantify the Uncertainties?

Why obtaining of the f (x) function is difficult?

1. Writing a solver capable of calculating values of the
function can be time consuming
=⇒ using external/commercial solvers.

2. It can be very expensive in both time and computer
resources needed to calculate it
=⇒ evaluating of the f (x) function in low number of
points.

3. The solver which is used to calculate the function does not
have to be reliable in a whole domain (convergence
problems)
=⇒ need to decide which result is credible.

15
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UQ | Response Surface Model – Kriging Interpolation I

1. Assume that the function f (x) is a realization of a random
field

F (x) = µ (x) + ε (x) ,where

µ(x) is a deterministic trend function and
ε(x) is a centered Gaussian Process (GP).
Gaussian Process
• It is a collection (set) of random variables {ε(x)|x ∈ RN}
• any number of which have a joint Gaussian distribution

In our case we can write that:

ε (x) ∼ GP(0, c(x,y))
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UQ | Response Surface Model – Kriging Interpolation II

2. Chose the covariance kernel of ε(x):

c
(

x,y;σ2, τ2, θ
)

= σ2
L∏

k=1

gg(xk , yk ; θk ) + τ2δx,y

where:

δx,y =

{
1, x = y
0, x 6= y

gg(x , y ; θ) = exp
(
−(x − y)2

2θ2

)
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UQ | Response Surface Model – Kriging Interpolation III

2. Define estimators of the expected value and variance of
the process

F̂ (x) = EF (F (x))

σ̂2(x) = VarF (F (x))

3. Derive the estimator F̂ following:
• it is a linear combination of known objective function values

F̂ (x) =
N∑

i=1

ai (x)F
(
xi) ,where

F
(
xi
)

denotes an i-th sample.
• it is unbiased

EF

(
F̂ (x)

)
= EF (F (x)) , and

• the Mean Squared Error (MSE) is minimal

MSE(x) = EF

(
F̂ (x)− F (x)

)2
= min 18
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UQ | Procedure I

1. Choose a point in which the uncertainty should be
quantified.

2. According to a given error, sample few points.

3. Fit the Kriging Model to obtain the mean response and the
variance of the model.

19
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UQ | Procedure II

Fig. 10: Uncertainty Quantification with Gaussian Process (GP). 20



UQ | Procedure III

Fig. 11: Uncertainty Quantification with GP. 21



UQ | Procedure IV

Fig. 12: Uncertainty Quantification with GP. 22



UQ | Procedure V

Fig. 13: Uncertainty Quantification with GP. 23



UQ | Procedure VI

Fig. 14: Uncertainty Quantification with GP. 24



Robust Optimisation



RO | What the Robust Optimisation is?

It is the optimisation in presence of the variables uncertainties.

25



RO | Demands

1. Take into account the various sources of the uncertainties
(in particular: variables errors, parameters errors, solver
errors)

2. Optimise not the objective function f (x) but the mean
function fu(x).

3. Simultaneously do the Uncertainty Quantification of the
optimal solution.

4. Use as low number of objective function evaluations as
possible.

26



RO | Solution I

Take the advantage of the Kriging method, like in the case of
Uncertainty Quantification.

To do so one has to:

1. Perform a Design of Experiment step and evaluate the
objective function f (x).

2. Fit the Kriging model to obtain the response F̂ (x) and the
variance of the response σ̂2(x).

3. Obtain the mean response F̂u(x) and the variance of the
mean response σ̂2

u(x).
4. Find the minimum of the model

fmin = min
xmin∈D

(
F̂u(xmin) + 3 · σ̂u(xmin)

)
27



RO | Solution II

Steps 1. – 5. are not sufficient. The UQ of the solution will be
poor (the variance of the mean response will be large).

To improve the solution one has to:

6. Use a certain algorithm to add a new point (points) in order
to improve the Kriging model.

7. Repeat points 2. – 5. and check if the optimum is good
enough (e.g. variance of the optimum is low). If not, go to
step 6.

28



RO | Relative Expected Improvement I

REI is defined as:

REI(x,x0) = E
(

max
x,x0∈D

(
fmin − F̂u(x),0

))
=

=
(

fmin − F̂u(x)
)

Φ

(
fmin − F̂u(x)

σ̂(x,x0)

)
+ σ̂(x,x0)φ

(
fmin − F̂u(x)

σ̂(x,x0)

)
where:

• φ is the probability density function of the standard normal
distribution N(0,1),
• Φ is the cumulative distribution function of N(0,1)

Φ(x) =

∫ x

−∞
φ(t)dt ,

• σ̂(x,x0) is a relative variance between f (x) and F̂u(x).
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RO | Relative Expected Improvement II

Fig. 15: The Relative Variance.
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RO | Example

Fig. 16: The process of optimisation.
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Test Case



TC | Overview

Fig. 17: The engine location and the channel.
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TC | Optimization variables I

Fig. 18: View of the morphing points locations.
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TC | Optimization variables II

Fig. 19: Movement of chosen morphing point.
34



TC | Optimisation process I

1. The Design of Experiment: 65 function evaluations, 2
unconverged evaluations.

2. A design region: [−0.32,0.32]× . . .× [−0.32,0.32].

3. A sampling space: [−0.4,0.4]× . . .× [−0.4,0.4].

4. Parallelization: 5 simultaneous and asynchronized jobs.
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TC | Optimisation process II

REI optimization convergence
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TC | Optimisation process III

Pressure loss:

• The base design: 517.8 [Pa]

• The optimum: 474.79 [Pa] (improvement: 8.31 %)

• The robust optimum: 476.16 [Pa] (improvement: 8.04 %)

• The variance of the robust optimum: 0.026 %

37



TC | Summary

Advantages:

1. black-box functions optimization,

2. robustness to unconverged results and mesh failures,

3. relatively low number of points necessary for optimisation
convergence and uncertainty quantification,

4. asynchronous parallel execution,

5. simultaneous optimization and uncertainty quantification.

Disadvantages:

1. relatively low number of design variables (~1–30),

2. low quality of estimation outside the design region.
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