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THE INTEGRAL FORM OF THE MOMENTUM EQUATION (STEADY MOTION)

In the Lecture 3 we derived the integral form of the Linear Momentum Principle. Let us write
it again in the form

[Z(o)dV + [ (o) 0-m)dS = [ #dS + [ pfaV
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Consider a stationary flow and assume that the external force field can be neglected. The
above equality simplifies to

ds = S
Joos= [l

momentum flux
throughthe boundary

J

The obtained relation is nothing else like the integral form of the momentum principle written
for a stationary flow. Note that it contains exclusively the integrals over the boundary of
the control volume (no volume integral are present).




Assume next that the boundary of the control volume Q can be divided into two parts: surface
of the body and the fluid boundary. Typical examples of such configurations for external and
Internal flows are depicted in the figures. Thus, we can write
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where the vector F is the reaction on the immersed body
from the fluid contained in the control volume.
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If we assume that the body is impermeable then N
U, |r =0 and we arrive at the formula which contains the T

body !

surface integrals over the fluid part of the boundary.
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—F = j (pv)v,dS — j odS
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Note that the obtained formula is valid for both incompressible and compressible flows.




Consider now an incompressible flow. As we know, the surface stress vector is equal
c=—pn+2uDn
and the formula for the reaction force F can be written as follows
F=— j (pv)v,dS — j pndS+2u j DndS
T auid T fuid T i

Quite often, we can choose / ;4 in such way that the viscous term is relatively small and
can be neglected. Then

F=— j (pv)v,dS — j pndS.
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Sometimes the part of the body surface is in the contact with some other motionless fluid
(typically, the ambient air) having a uniform pressure ps.

Note that for the closed surface /7 ;, we have




The formula for the actual (net) force can be then written as follows

|:net:_ j (pv)UndS_ j (p_pa)nds

I fluid
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During the tutorial part we will see that the formula in the above form is particularly useful to
calculate the reaction force exerted by a free stream colliding with the solid body.

Example: Certain fluid machinery device hidden in the control volume splits the incoming
uniform stream of liquid into three outflows — see figure. Calculate the reaction force exerted

by the liquid on this device.
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Since the flow is only through the inlet and
outlets and we assume that everywhere except

the inlet the pressure is p,, we can assume that
I'=5,0US,USs,.
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Finally, the reaction force is

F = (pA+pnA)e ~$pP%e —§p%e, =

= (%PT+ pnAj)e1 + (_%P%)ez
F, -




STRESS AND REACTION FORCE EXERTED AT AN IMMERSED SURFACE

We will derive the pretty general formula for the wall stress and reaction the force which
shows the relation between wall tangent stress and wall distribution of vorticity.

We again begin with the most general formula

F=|6dS= | ZndS.
a_La j n
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The constitutive relation for an incompressible Newtonian fluid can be written as follows

E=—pIl+2uD=—pIl+2u4 Vv -2u R

gradient of Iig}]ast(; on
velocity
Since Rn=—inxroto=—3nxw

we can also write c==2n=—pn+2uVo-n+ unxaw.




The following theorem holds:
If divo=0 (incompressible flow)and »| =0 then Vo-n+nxw=0.

Proof:

Since o | - 0 then the boundary 0.2 is the izosurface for all components of the velocity

field and the gradients of these components must be perpendicular (normal) to 0.€2.

Thus, we can write

oV,
Vo| xn=0 = —=4n , k=123
for some real numbers 4; (j = 1, 2, 3).
Next, in the index notation we have
_ V _ an
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After insertion we get
_ (.0 _ (.0
| .o _ 0 o _
—[a—xjui+(5ia5j — 0. 5]05 > uﬂ}njei_((ax U+40) — 5 u)n e =
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Using the above result in the formula for the stress vector, we finally obtain the formula

c=—Pn—UnXw®.

Note that pNxN=0 and (Nx®)-n=0 so the first term corresponds to the normal
stress while the second one — to the tangent stress at the boundary surface 0 (2.

The total aerodynamic force can be calculated from the integral formula

-—j(pn+ynxaﬁd8
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Interestingly enough, the above formula for the force F can be derived without the
assumption that the velocity is zero at the boundary (however in such case the formula for

the stress vector is not generally true!). Indeed, we have

F = dS=- dS+2 -ndS dsS .
81[20' d‘;pn + ,uaJ;ng n +,uaJ;2n><w

€2 Laplacian of

tensor version
of GGO the velocity
= jwv-v)dx —ij(va)dx:—ijwdx = - j nxwdS
2 =0 Q2 =0 2 GGO for 042
the cross
product
Thus
F=-— j pndS—2u j NxwdS + i j nxmdS=— j (pn+unxw)dS
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