
 

 

 

 

LECTURE 6 

KINEMATICS OF FLUIDS –PART 2 
 

 

 

 

 

 

 

 

 

 



RELATIVE MOTION OF FLUID ELEMENTS 
 

Consider two fluid elements located instantaneously at the close points A and B. We ask what 

happens to the relative position of these fluid elements after a short time interval  t . 
 

The location of the first fluid element after the time t  can 

be expressed as follows 
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Since    B A x x ρ  then analogously we have 
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where the vector ρ describes the relative position of the 

fluid elements at the time t .  

 

During a short time interval t  this vector has changed and can be expressed as  
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In the above, we have dropped the lower index “A” at the location vector corresponding to the 

first element.  
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The rate of change of the vector describing the relative position of two close fluid elements 

can be calculated  
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We have introduced the matrix (tensor) called the velocity gradient    
j
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The velocity gradient υ  can be written as a sum of two tensors    υ D R, where 
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We will show that the change of the relative position of the fluid elements due to the 

action of the antysymmetric tensor R corresponds to the local “rigid” rotation of the 

fluid.  
 



Next, we will show that the action of the symmetric part D corresponds to the “real” 

deformation, i.e. it is responsible of the change in shape and volume. 
 

To this end, we note that    1
ij 2 ijk kr    ,  where k  are the Cartesian components of the 

vorticity vector    
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Indeed, we have  
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Thus, we can write    
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Moreover, we get 
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i.e., the distance between two (arbitrary) fluid elements is fixed and there is no shape 

deformation.  
 

The skew-symmetric part of the velocity gradient describes pure rigid 

rotation of the fluid and the local angular velocity is equal 1
2ω. 



DEFORMATION OF FLUID ELEMENTS 
 

The rate of change of the relative position vector (or – equivalently – the velocity of the 

relative motion of two infinitely close fluid elements) can be expressed by the formula  
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The first terms consists the symmetric tensor D, called the deformation rate tensor.   

 

The tensor D can be expressed as the sum of the spherical part DSPH and the deviatoric part  

DDEV  
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The spherical part DSPH describes pure volumetric deformation (uniform expansion or 

contraction without any shape changes) and it defined as 
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The second part DDEV describes shape changes which preserve the volume.  
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and                                             DEV SPH
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To explain the geometric interpretation of both parts of the deformation rate tensor, consider 

the deformation of a small, initially rectangular portion of a fluid in two dimensions.  Assume 

there is no rotation part and thus we can write  
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For a short time interval t  the above relation yields 
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Consider the 2D case when only volumetric part of the deformation exists (see picture).  
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The relative position vector at the time 

instant t t  is expressed as 
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The shape of the volume is preserved because the above formula describes the isotropic 

expansion/contraction. The volume of the region ( ) 1 2Vol t L L   has been changed to 
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Assume now that the spherical part of the deformation rate tensor is absent. The deviatoric 

part of this tensor in a 2D flow can be written as follows 
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The fluid deformation during the short time 

interval can be now expressed as 

 

( )( ) ( ) ( ) 2
DEV O tt t t t     ρ I D ρ  

 

or in the explicit form as  
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Note the presence of shear, which manifests in the change of the angles between the position 

vectors corresponding to different fluid elements in the deforming region. 
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Let’s compute again the change of the volume of the fluid region during such deformation.  
 

We get  
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We conclude that this time the instantaneous rate of the volume change is zero. Thus, 

instantaneously, the deviatoric part of the deformation describes pure shear (no 

expansion/contraction). 
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