
 

 

 

 

LECTURE 14 

 

NORMAL SHOCK WAVE  
 

 

 

 

 

 

 

 



NORMAL SHOCK WAVE. HUGONIOT ADIABATE. 
 

Gas dynamics admitts existence of strongly 

discontinuous flow. The normal shock wave is the 

simplest example of such flow. 
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Conservation laws for the NSW 
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Divide (2) by (1) … 
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New form of  (3)  is     ( )( ) 2 1
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Using (4) the Eq. (5) can be rewritten as 
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The LHS of (6) can be transformed using the mass conservation equation (1) … 
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Thus, we get from (6)    2 2 1 1 2 1
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We multiply (7) by 1 1p and get the formula which involves only the ratios 1 2   and 

2 1p p  …. 
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We have obtained the formula describing the thermodynamic process  which affects the 

gas passing through the NSW. Note that it is different that the isentropic process! We 

call the above formula the Hugoniot Adiabat (HA). 
 

Let us analyze some properties of the HA. Note that for 2

1

1
1 1

 
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Thus, at the shock wave the density of gas always increases but never more than 1
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times. 
 

 



 

For brevity we introduce 2 1y p p=  , 2 1x  =  and 1
1


 +
−= . The formula (8) can be 

now written as 
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Then, we have   
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Note that in case of the isentropic process, we have  ( )y x x= , so ( ) 1y x x − =  and 

( )y 1  = . Moreover 
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We see that the isentropic and normal shock wave adiabats fit very well to each other in 

the vicinity x 1=  (they have the same values of ( )y 1 , ( )y 1  and ( )y 1 ). We say that these 

lines are strictly tangent at x 1= .  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Physically it means that weak shock waves are nearly isentropic and 
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ENTROPY AND GASODYNAMIC RELATION ON THE NORMAL SHOCK. 

From the 1st Principle of Thermodynamics we have 

 

( ) p p

dq 1 dp dT dp dT dp
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From the Clapeyron equation …. 
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and the differential of (mass specific) entropy can be written as 
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After integration we get       ln ln ln( )
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Thus, the change of entropy between two thermodynamic states can be expressed as 

follows 
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Note that for the Hugoniot adiabate  we have 
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i.e., the shock wave cannot expand the gas (it would lead to entropy decrease which 

contradicts the 2nd Principle of Thermodynamics). Thus the ( nontrivial) shock wave 

must be a compression wave! Indeed, in such case 
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We further observe that       
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Using the energy equation (integral) we also conclude that 
 

( ) / 1

2 2

2 1 1 p 22T T u u 2 Tc T0− −   =  
 

i.e., after crossing the shock wave the gas warms up. 
 

We would like to know what kind of flow exists at different sides of the NSW.  

 

Writing the energy equation in the following form 
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we obtain the following 

( ) ( )

( ) ( )

2

11
12

1 1 1

2

21
22

2 2 2

p 1 a
u

1 u 2 1 u

p 1 a
u

1 u 2 1 u

 

  

 

  





+
+ =

− −

+
+ =

− −

 



 

Subtracting the above equations we get 
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After some algebra we derive the Prandtl’s Relation 
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The immediate conclusion from PR is that      1 2u a and u a    
 

What about the Mach number? 

The energy equation                     
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can be divided by the square of velocity to obtain 
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After simple manipulations we have       
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From the above the following we infer  

 

11 1u Ma      and   22 1u Ma   

 

Thus, the flow in front of the NSW is always supersonic, while the flow behind it – 

always subsonic. 

The quantity 
u

a




=  is called the velocity coefficient. In contrast to the Mach number, the 

velocity coefficient assumes values in the bounded interval, namely 
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The Mach number of the flow behind the wave M2 can be expressed as the function of the 

Mach number in front of the wave M1. To obtain this formula we use the Prandtl’s 

Relation … 
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After some algebra we get 
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Similarly,  we can expressed the ratios of density, pressure and temperature values.  

The density ratio can be evaluated as follows 
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To evaluate the pressure ratio (as the function of M1) we rewrite the momentum equation 

in the following way 
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Since the above expression has the same value at both sides of the shock wave, we get 
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The flow through the shock is adiabatic (total energy is conserved) and the total (or 

stagnation) temperature T0 remains the same.  
 

Thus, we can write 
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where the ratio T/T0 can be calculated from the formula derived in the Lecture 13. 
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In the end, we will explore what happens to the stagnation pressure. Conceptually, we 

consider the process described as follows 
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We claim that the total (stagnation) pressure diminishes on the shock wave.  

The justification of this fact goes as follows.  

We know that the entropy of the gas increases on the 

shock wave. The formula derived earlier can be written 

for stagnation parameters, namely 
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Since the total temperature at both sides is the same 

then  
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