
 

 

 

 

LECTURE 5 

 

EULER EQUATION AND ITS FIRST 

INTEGRALS 
 

 

 

 

 

 



 

THE EULER EQUATION 
 

The Euler equation is the equation of motion of an ideal fluid with zero viscosity. We have 

already derived its standard form which is 
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Using the Lamb-Gromeko form of the convective acceleration  
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we can write the Euler equation as follows 
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Let us assume that: 
 

(1) the flow is steady (or stationary), i.e., all flow quantities do not depend explicitly on time  
 

(1) volumetric force field is potential, i.e. there exist such scalar field  f   that   ff , 
 

(2) fluid is barotropic, i.e. its density is uniquely determined by pressure ( )p  . We 

know that in such case the pressure function P can be defined by the formula  
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Also, let us recall (see the lecture about fluid statics) that for the incompressible fluid ( ρ 

constant) we simply have /P p  , while for the ideal gas in isentropic conditions we 

have  
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With the above assumption the Euler Equation can be written in the following form 
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Choose any streamline and define the tangent unary vector  /τ υ . Next, multiply the 

above equation (in the sense of the inner product) by τ . The result is 
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Hence, the function under the gradient operator is constant along  the streamline:       
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The above equality is called the Bernoulli Integral of the Euler Equation. The Bernoulli 

constant CB can be – in general – different for different streamlines. 

 

  



 

 

If the cross product  0 υ ω  then 
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i.e., the Bernoulli constant is the same for all streamlines. In particular, this happens if the 

vorticity ω  vanishes identically in the whole flow domain ( 0ω ). Then, the velocity is the 

potential vector field, i.e., there exists such scalar field V  such, that  Vυ . 
   

In practice, we use the Bernoulli Equation which is obtained by equating the values of the 

Bernoulli Integral calculated for two different points A and B located in the same streamline 
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RELATION OF THE BERNOULLI EQUATION TO ENERGY CONSERVATION 
 

In many engineering handbooks one can find 

a different “derivation” of the Bernoulli 

Equation, suitable for  incompressible flows 

only. Let us demonstrate this approach. 
 

Consider the stream tube, i.e., the volume of 

fluid bounded by the surface made of all 

streamlines passing through the closed loop 

γ (see Figure). The general assumption is 

that the loop is very small so is the cross-

section of the tube and hence uniform 

distribution of pressure and velocity can be 

assumed across the tube. 
 

Let us consider the change of the kinetic energy of the fluid contained between sections A and 

B of the stream tube, which occurs in the short time interval t . First of all note that the mass 

of fluid portions which cross both sections of the tube in this interval is exactly the same and 

equal (we assume that the velocity vector is perpendicular to the section plane) 
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The change of the kinetic energy is equal to the work performed by pressure and volumetric 

force fields 
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Division of the above equality by m  and simple rearrangement of terms yields the Bernoulli 

Equation for the points A and B 
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In particular, when the volumetric force field is the uniform gravity field 
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then the Bernoulli Equation is often written as (after multiplication by density) 
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For the combined gravity and centrifugal forces (see Example 3 in the Lecture 1) 
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The Bernoulli Equation has the following for 
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Note that in general, the Bernoulli Equation is derived without assumption of 

incompressibility! For instance, we can write BE for the adiabatic continuous motion of the 

ideal Clapeyron gas. We know from thermodynamics that in such conditions pressure and 

density are related by the isentropic formula  
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Thus the flow is barotropic and the pressure function P can be computed as follows 
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and the B. Eq. can be written      
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Note that due to low density of gases the volumetric force field is often neglected. We will 

show later that the above Bernoulli equation is in fact equivalent to the first integral of the 

energy equation. However, in general the Bernoulli Equation may have nothing to do with 

the energy conservation. For instance, this equation can be written for the isothermal motion 

of the Clapeyron gas. Indeed, in such circumstances the flow is barotropic since from the 

equation of state we immediately have 
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The pressure function for such motion is equal 
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where refp  is some reference pressure. The corresponding form of the Bernoulli equation is 
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Clearly, the total energy (sum of the mechanical and internal energy) cannot be conserved 

during isothermal motion: the internal energy remains fixed while the mechanical one 

changes.
 



 

CAUCHY-LAGRANGE EQUATION 
 

The Bernoulli Integral is not the only first integral of the Euler Equation. We may get another 

one if we change the assumption about the flow properties. 
 

Now, let us assume that the flow is nonstationary but the velocity field is potential. It means 

that there exist the scalar field (the velocity potential) v such that 
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Then, the following equalities hold 
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As we see, the flow is irrotational (the vorticity vanishes identically). The Euler equation 

takes the form of 
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Thus, the expression under the gradient operator can depend on be time only, i.e.  
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In the above formula, the function C is an arbitrary chosen function of time. Typically, we can 

conveniently assume that ( ) 0C t  .  

 


