DYNAMICAL REACTION FORCES — FURTHER EXAMPLES
1. REACTION OF THE WALL-IMPINGING STREAM

The boundary: 002=A, U A U A, uother

In the whole domain  p=p,

Formula for the reaction force:

R :—j%punvds —jAlpUnvdS —IAzpunvdS

Next... U,=Q,/A, and v,=0 =0,

At the inlet A;:
v=y,Since, +y,cCosaxe, , N=-SINae, —CoOSae,, L, =v-n=-U,

Lb pu,dS =—pAussinae, — pAu; cosae,




At the outlet A:
v=ve,=ye, , N=€,, U=V =Y, ,

J-Ai pu,dS = pAuvse,

At the outlet A,:

IAZ pu,pdS =-pAlge,

After insertion we obtain

R :pﬁbugsinaex +pu§(AbC08a—Ai+ A)e, =
= pQuu,SIna e, + pu,(Q,cosa—Q, +Q,)e,

But what is the flux distribution ?!




Assume that Ry =0 (only normal reaction exists).

Thus:
{Q1+Q2:Qo — {lem%Qo
Q—-Q,=Q,coscx Q, === Q,

Finally, the reaction force is equal

R=pQ,u,since,




2. REACTION FORCE ON THE CONVERGENT TIP OF THE FIRE (OR GARDEN) HOSE

V,=Q/A,

Q=0vA=0A = u,=Q/A , 1,=Q/A,

The Bernoulli Eq. 1-2:

1 2 _ 1 2 _ 1
PLtsp0 =P +500, =  P—Pa=3500, =500




The reaction is calculated as follows ...

F, =—J‘Alpunuxd8 —jAl(p— p,)n, dS —jAZpUnUXdS —j (P—P)n,dS =

-1 O

-pA )V = A(p — P)(=D) - pALY, = pAV] — pAL; + A (S po; — L pUf) =

3 pAU — pAL; +5 pAL; = %%—p%%pﬂg 12322(% 2AA + A) =

1 Z(Ai AZ)
=3 pQ AiAZ




3. THRUST FORCE OF THE JET PROPULSION

obszar kontrolny
//
\</P1<Pa V,=Q/A, -
A N 2
> -P - B H_x)
/ - N
A / A,
P, V..=0 Vi=WA,

FX :_j‘ALPUnUXdS _Ipl(p_ pa) n, dS _jAQPUndeS _IAz( P— pa)nxdS —

-1

=—pAu (=) = A(P,— P)(=1) — pAL, =

The Bernoulli Eg. from oo the inlet section ...

pAL; — pAL; + A (P —P,)

pa:p1+%p012 — p1_pa:_%p012




obszar kontrolny
//
\</P1<Pa V,=Q/A, _
(L N p2 pa
' ' —> N
AT > A,
P, V..=0 Vi=WA,
2 2 1 2 1 2 2 1 Q2 Q2 1 Q2
Fo=pAv — pAL, =5 pAU =5 pAL; — pAD,; = EPK—PE =3P AR, (A, —2A)

If A >%A, then F, <0, hence the thrust force is obtained.

Exercise: Solve the above problem in the case when the jet engine moves with the velocity
W (in the left direction!)




4. SIMPLE MODEL OF A WIND TURBINE. THE BETZ’S LIMIT.

A =nD?%/4
............................................ - | We assume that in the whole domain

A1ﬂ V1 p = pa
&
Fy Force exerted on the air stream ...
_____________________________________________ F=| poodS+| pvovdS=
pEpatm jA& J‘Az

= _pA1012 +pA2022 <0

Kinetic energy (de facto — power) of the air stream
AE =Fu; = 3Quu; —3Quu =ur (—pAy; + pAv;)

From the continuity condition: Q. =0 =pAv, =pAv, =pAr;

. 2 2
Thus, we get: 2Q.0;, —3Q.0; =0;Q. (v, —v,)

Conclusion: vy =3(0+0,)




Assume:

v,=V_i v,=aV, , ae($,1)
Then:

v, =20, —0, =(2a -1V,
v—v,=21-a)V,

Formula for the force

|FX| = pQu, — pQu, = pv A, (v, —v,) =

=2a(l-a)pV’ A

Power produced by the turbine P =|F|or =2a*(l-a) pV A
Calculation of the maximal power

d(a)=2a°1-a) , q(a)=4a-6a"
J(a)=0 < a=0 lub a=2 (max!)

Hence ., =0(%)== and meax :%PVCSAF




Efficiency — ratio between the produces power and the stream of kinetic energy carried by
an undisturbed air stream with the cross-section area equal A.

We have
P )
= =20(a)=4a"(1-a)
IPAN
Note that N < Max =32 *~959% — Betz's limit




5. DETERMINATION OF THE AERODYNAMIC DRAG BY MEASUREMENT OF THE LINEAR
MOMENTUM DEFICIT IN THE WAKE BEHIND THE BODY

A —
y P=Patm linia pradu ______....---- —\/
H asssesco=c=°""" 0
| ,
LY
' V°° ~\
obszar kontrolny V,=V, (}/) y
| X
0 ' i L Ty T ——————————— >
linia prgdu o Voo

D=—-| pv0v,dS—| pv.,dS—

out side

H
=—PHVV, = p[ i ()dy -AQV. =

= p[ V=03 ()Idy - AV, [ IV 0, (0)]dy = o[ 0, (V)IV. —0,(y)]dy

ouL,.L,dS =




6. USING LINEAR MOMENTUM BALANCE TO ESTIMATE THE LOCAL PRESSURE LOSS.

Assumption: pressure at the vertical
part of the wall is equal ],

Increment of the linear momentum in the control volume is

A&
AP, = pAu; — pAu; = pA, = a7V - pAU, = puyA,
The force acting on the fluid in the control volume is

F=pA+DP (A-A)-PA =(p—P,)A

~p1

AA]
AA




Accordingly to the 2" Principle of Dynamics

AP, =F

X X
Hence

2/&_2/%)

APzzp =P, — Py :%pulz[ A A22

From “naively” applied Bernoulli Equation we obtain

1 2 1 2
7 PU + P =35 0U, + 1,

2
u

APy = P, = Py = U =3 U =%puf[1‘—z]=%puf[1__ﬂ
1

We can see that

APzzp # APgg




We introduce the correction term to the BE accounting for the pressure lost due to sudden
expansion of the duct

%pulz + 0 :%pulz + P, +APy, = P Py :%pulz _%pulz — APy,

Hence, we obtain the formula

Apzzp — ApRB _Apstr — Apstr — ApRB _Apzzp

The local loss of pressure can be expressed as

> 2A 2 :
Apstr=%pu12£1 AR, A&] ( i) TP =C) 3 pUy

NTA A

. . 2
WE have introduces the local pressure loss coefficient &, = (1— AJA } . Here, the
reference velocity is the average velocity in the duct in the front of the expansion.




If for some reason we prefer the reference velocity to be the velocity behind the expansion
then we can easily transform our formula as follows

APy, =£ —ﬁj %pr=(1—%} %pﬁuz{i— ] 1pu;, =<, % pu;

Hence, this time the local pressure loss coefficient is ¢, = (A, /A —1)°.

A,

Note: In the limit case —= — o0 (which corresponds to the outflow from the duct to large

container) one gets

-

A

Clearly the coefficient £, becomes unbounded.




