
 

 

 

 

 

 

LECTURE 2 

KINEMATICS OF FLUID – PART 1 
 

 

 

 

 

 

 

 

 

 



 

LAGRANGE AND EULER VIEWS ON THE FLUID MOTION. FLUID VELOCITY AND 

ACCELERATION 

 
 

Fluid element is defined as an individual and 

infinitely small portion of the fluid. Each fluid 

element is characterized by its instantaneous 

location (or position) vector x, which is the 

function of time t and the initial position ξ of the 

element, i.e. its location at the time instant t = 0. 

Thus we have ( , )t=x x ξ  and in particular 

( , )0=ξ x ξ .  

 

If we fix =ξ ξ  then the function ( , )t =x x ξ  describes some line in E3 called the 

trajectory of the fluid element. 
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For the fixed time t 0  the function ( , )t=x x ξ  

describes the transformation of the region filled with 

the fluid at the time t = 0 – let’s denote it Ω0 - to the 

region ( ) ( , )0t t = x  containing the same fluid at 

some later time t . Thus, the region Ω(t) is the image 

of  Ω0 with respect to the transformation ( , )t=x x ξ ; 

we call  Ω(t) the material volume because all the 

time it consists of the same fluid elements, i.e. those 

which belong originally to Ω0.  

 

 

 

Note: two, originally different, fluid elements cannot drop into the same point where the 

velocity is not zero, i.e., only one trajectory can go through such point. These condition can be 

described mathematically as follows. If ( , )1 t=x x ξ  and ( , )2 t = +x x ξ  then the following 

group property holds 

 

[ ( , ] ( )2 1t t  = + = =x x( ,ξ) x ,x ξ) x ,x   
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Any fluid motion can be described using either Lagrangian or Eulerian viewpoint.  

 

Lagrange viewpoint: each fluid element is identified uniquely by its position at t = 0, i.e. by 

the vector ξ. All kinematical and dynamic quantities are described as functions of time and the 

Lagrangian coordinates ξ1, ξ2 and ξ3. 

 

The velocity of the fluid element is defined as 

 

( , ) ( , )
( , ) : lim ( , )

t 0

t t t
t t
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Fluid acceleration is  defined as       
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Euler viewpoint: the velocity, acceleration and other kinematical or dynamical quantities are 

described as functions of time t and the position of the fluid element at this time instant (not 

at the initial time!), i.e. by the coordinates x1, x2 and x3 of the vector x.  

 

The velocity field is the function of time and space coordinates ( , )t=υ υ x .  

 

The relations between two different viewpoints can be written as 

  

Euler to Lagrange:    ( , ) [ , ( , )]t t t=V ξ υ x ξ  

 

Lagrange to Euler:    ( , ) [ , ( , )]

inverse
transform

t t t=υ x V ξ x   

 

The Euler form of the fluid acceleration will be considered later. 

 

 

 



 

TRAJECTORIES OF FLUID ELEMENTS 
 

Lagrange:   ( , ) ( , )t t t
 =x ξ V ξ    (ξ – fixed parameter).  

Thus       ( , ) ( , )
t

0

t d = + x ξ ξ V ξ .   

 

We have obtained direct integral formula which can be calculated numerically (e.g. using the 

trapezoidal integration rule) 

 

Euler:  we have the following initial value problem  
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Typically, the above Initial Value Problem has to be solved numerically (e.g. using the 

Runge-Kutta methods) 

  



 

STREAMLINES OF THE VELOCITY FIELD 
 

The streamline: line l such that for every point P on l the velocity vector at the point P is 

tangent to l. 

 

The tangency condition can be written as 

 

( , , , ) ( , , , ) ( , , , )
31 2
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The above equalities can be view as the differential equivalent of the “edge” description of the 

2-parameter family of lines in 3-dimensional space, namely 

 

( , , , , , )

( , , , , , )
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In the above, time t is treated as the fixed parameter. In other words, the pattern of 

streamlines is determined for each time instant separately and – in general – the form of 

the streamlines at different time instants is not the same.  
 



 

 

 

The practical method of computing the streamlines is to “freeze” time and “inject” the 

marker particles into the “frozen” velocity field. The movement of the marker particle injected 

in the point x0 is described by the following initial value problem 
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where physical time t is fixed (“frozen”) and the variable τ is the “pseudo-time”. In other 

words, the streamlines are the trajectories of the marker particles moving in the frozen 

velocity field.  

 

We conclude immediately that fluid element trajectories and the streamlines are identical 

if the velocity field does not depend explicitly on time, i.e. if the flow is stationary. 

 

 

 

 

 



 

 

EXAMPLES 
 

(1)  Stationary two-dimensional flow       ( , ) [ , ]1 2 2 1 1 2 2 1x x x x x x= − +  −υ e e  
 

 

Streamlines:    , .2 2 21 2
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x dx x dx 0 x x R R 0
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−
 

 

We have obtained the family of the concentric circles. 

 

Trajectories:       
,

( ) , ( )

d d
1 2 2 1dt dt

1 2

x x x x

x 0 R x 0 0
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
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The solution is   

     ( ) cos( ) , ( ) sin( )1 2x t R t x t R t= =  

 

which is the parametric form of the circle  ,2 2 2
1 2x x R R 0+ =  . 

 



 

(2) Nonstationary (or unsteady) flow    ( , , ) ( ) [ , ]1 2 2 1 1 2 2 1t x x x t x x t x= − − +  − −υ e e  
 

Streamlines:  
 

( ) ( ) , .2 2 2 2 21 2
1 1 2 2 1 2

2 1

dx dx
x dx x t d x 0 x x t C t R C t

x t x
=  + + =  + + = +   −

− −
 

Again: the family of concentric circles but the pattern of the streamlines moves down along 

the 0x2 axis with the steady speed equal –1 (see figure). 

 

Trajectories:      
,

( ) , ( )

d d
1 2 2 1dt dt
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x x t x x

x 0 x x 0 x
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The solution  
( ) ( )cos( ) sin( )

( ) ( )sin( ) cos( )
1 10 20

2 10 20

x t x 1 t x t 1

x t x 1 t x t t





= + − −

= + + −
 

 

Consider x10 = -1 and x20 = 0. Then   x1(t) = -1  and  

x2(t) = -t so the fluid element moves down the straight 

vertical line x1 = -1 with the steady velocity equal to –1.  

 

The trajectories in the unsteady flow can be quite different that the streamlines!   
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SUBSTANTIAL (MATERIAL, LAGRANGE, LIE) DERIVATIVE 

 

Consider a sufficiently regular scalar field ( , ) ( , , , )1 2 3f f t f t x x x= =x . For an observer 

moving with a given fluid element the value of this field is a time dependent quantity 

described by the composite function  

 

( ) : [ , ( , )]F t f t t= x ξ  

 

The rate of change in time of the field f seen by such observer moving with the fluid is called 

the substantial (material, Lagrange, Lie or full) derivative of the field f.  
 

Mathematically, we have 

 

[ , ( , )] : ( ) [ , ( , )] [ , ( , )] ( , )

[ , ( , )] ( , ) [ , ( , )] ( , ) [ , ( , )]
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 
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x ξ x x ξ ξ
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where we have used the relation       ( , ) ( , ) [ , ( , )] , , , .j

j

j

x
t V t t t j 1 2 3

t



= = =


ξ ξ x ξ  



 
Since the arguments at both sides are the same, we have obtained the scalar field which can be 

written using “nabla” operator as 
 

convective
derivativelocal

derivative

f
f

t

D f

Dt





= + υ , 

or in the index notation (summation convention is assumed) 
 

 

j
j

D f f f

Dt t x


 
= +
 

 

 

• The first term in the right-hand side of the above definition is called a local derivative. 

It “measures” the rate of change of the field f due to its explicit time dependence at a 

fixed space location. It ( ) ( , , )1 2 3f f f x x x= =x  we say that f is stationary (or steady) 

and the local derivative /f t   vanishes identically.  

• The second term is called the convective derivative of the field f. It is generally 

nonzero even if the field f is stationary. It measures the rate of change due to the 

movement of the observer. This part of the substantial derivative vanishes identically if 

the field f is uniform in space, i.e. its instantaneous value at each point is the same. 



ACCELERATION – EULER VIEW 
 

Consider the acceleration of fluid elements in Euler description. In order to calculate the 

acceleration we need to differentiate the velocity along the trajectories of fluid elements. 

We have 

( , )
j j

i i i
i i

j j

DD
t

Dt Dt t x t x

  
 

 
 
 
 

   
= = = + = +

   

υ υ υ
a x e e  

 

We see that the acceleration is the vector field. In popular notation, the convective part of 

the acceleration is written using the formal inner product of the velocity field and nabla 

operator 

( , ) ( )
D

t
Dt t


= = + 


υ υ

υ υ
a x . 

 

An alternative way of expressing the fluid acceleration is the Lamb-Gromeko form 
 

( , ) ( )21
2t

t



= + + 


υ
a x ω υ  (show!) 

 

where || || = υ  is the velocity magnitude and =ω υ is the rotation of the velocity field 

called vorticity. The proof of the identity  ( ) ( )21
2 = + υ υ υω  is recommended as 

the exercise for the Reader. 


