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Fundamental Principles of Mechanics tell us what happens with:
® Mass
e [inear momentum
e angular momentum

e energy
during a motion of a fluid medium.

Basic equations of the Fluid Mechanics are derived from these principles.

Additionally, the reference to the 2"* Principle of Thermodynamics may be
necessary in order to recognized physically feasible solutions.




CONSERVATION LAWS — GENERAL FRAMEWORK

Consider an extensive physical quantity H. The spatial distribution of this quantity can be
characterized by means of its mass-specific density h. AT this point we do not precise if the
field h is scalar, vector or tensor.

Consider the finite control (not fluid!) volume (2 embedded in the fluid. The total amount of
the quantity characterized by the density field h is expressed by the volume integral

H(t):jphdv

where o denotes the mass density of the fluid. We ask the fundamental question: what is the
rate of the temporal change of H? The general answer is
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production flow through 0.2

I.e., The total rate is the sum of two contributions:
e change rate due to the production/destruction of the quantity H,
e change rate due to the transport of H by the fluid entering/leaving £2 through the
boundary 042.




Note that the second contribution can be expressed by the following surface integral (see
figure)

dH
~ — =—| pho,dS
AdH = phV”dSAt dt flow through 002 a";g
\% / | where v,| =wv-n|  denotes the normal
y /’ VAl component of the fluid velocity at the boundary.

The negative sign in the formula appears due to
the fact that the normal vector n point outwards,
so the negative value of v, corresponds to the

incoming flow (positive — for the outflow).

dS

The general principle of conservation (or rather variation!) of the quantity H can be cast into
the following form

dH
dt
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production

where & ... Stands for the “source” terms which describe time-specific production or

destruction of the quantity H in the volume (2.




The particular character of the source terms depends on the quantity H:

1. Mass of fluid
Then h=1 and HEM(t):jpdV
Q

In this case &, =0 since mass cannot be produced or created!

sources

2. Linear momentum

Then h=v and H EP(t)z_‘-pvdV
Q

In this case the source term is the sum of all external forces acting on the fluid contained in
0

Esources = Fs + K= _[ o dS + I'Of dVv
Q0

surface volumetric ~ 042
forces on 002 forcesin 2

where ¢ denotes the stress vector at the boundary 0£2.




3. Angular momentum

Then h=xxv and K(t):jxxpvdv
0

In this case, the source term is the sum of all external moments of forces acting on the fluid
contained in (2

E = M, + —J-andSJrIxxpde

sources
surface volumetric o2
moment on 02 moment in 2

4. Energy

Here we mean total energy which is the sum of internal and kinetic energy of the fluid.

Then h=e=u+iv-v=u+10" and

H=E(t)= [ pu+30v?)dV

where U denotes the mass-specific internal energy of the fluid and v is the magnitude of the
fluid velocity.




The source terms include:
e work performed per one time unit (power) by surface and volumetric forces
e conductive heat transfer through the boundary 0£2
e heat production by internal processes and /or by absorbed radiation.

We can write Cores)= P+R + Q, + Q,
— ] )
power of external conduction of internal heat
forces heat through 6.2 sources

where the mechanical power terms are

Po=[owds ., R=[pf wdv
00 Q0
and the heat terms are

QaQ:__[CIh'ndS ) QQ:_.‘/U/th
60 Q

In the above, the symbol @, denotes the vector of conductive heat flux through the boundary
0£2 (we will see later that it can be expressed by the temperature gradient) and the symbol ,

stands for the mass-specific density of internal heat sources in the fluid.




EQUATION OF MASS CONSERVATION

We have already mentioned that for the mass the source terms are absent. Thus, we have
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or, equivalently
%jpdv —(—J. ov-ndS)=0
Q0 02

Since the volume (2 is fixed we can change order of the volume integration and time
differentiation. We can also apply the GGO Theorem to the surface integral to transform it to
the volume one. This Is what we get

[[§p+V-(p)ldV =0




Finally, since the volume 2 can be chosen as arbitrary part of the whole flow domain then —
assuming sufficient regularity of the integrated expression — we conclude that

gpr+V-(pv)=0

at each point of the fluid domain. We have derived the differential equation of mass
conservation!

The obtained form of this equations is called conservative (sic!). However, other equivalent
forms can be obtained by using standard manipulations with differential operators

O=Ep+V-(pv)=ﬁp+v~ij+pV-v:D%p+pV-v

D
mp

In the Index notation
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Note that:

1. If the flow is stationary, i.e. none of the parameters is explicitly time-dependent, then the
equation of mass conservation reduces to the form

V-(ov)=v-Vp+pV-0=0

2. If p=const then the mass conservation equation reduces to the particularly simple form
(the continuity equation)

V-0=0

In words: the divergence of the velocity field of the constant-density fluid (liquid)
vanishes identically in the whole flow domain. Note that this condition is the geometric
constrain imposed on the class of admissible vector fields rather than evolutionary equation.




TWO-DIMENSIONAL INCOMPRESSIBLE FLOW. STREAMFUNCTION.

The streamfunction is a very convenient concept in the theory of 2D incompressible flow. The
idea is to introduce the scalar field v =y (t, X, X,) such that

U, = 5x2'7” ’ v, = —5X1W
Note that the continuity equation (see Lecture 3)
Oy U, +0, v, =0
Is satisfied automatically. Indeed, we have

axlul + aXZUZ = 6x1,x2'7” - 5x2,x1'# =0

The streamfunction has a remarkable property: it is constant along streamlines.

To see this, it is sufficient to show that the gradient of the streamfunction is always
perpendicular to the velocity vector (why?). It is indeed the case:

Vy-vo=v0,y+0v,0, y=—vv,+0,0,=0




Consider a line joining two points in the (plane) flow domain. We will calculate the
volumetric flow rate (the volume flux) through this line.

Y=Yg=YptQpp e haveB i
B&J QAB:Iv-ndS:j(Uln1+uzn2)dS:
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streamlines (v, 7,0, 7,)ds = j (7,0, +71,0, w)ds =
A
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Vy -ds=yz -y,

Y=y

The volumetric flux through the line segment is equal to the difference of the
streamfunction between the endpoints of this segment.

Note: the scalar stream function can also be defined for axisymmetric flows. In general 3D
flows, the vector stream function ¥ can be introduced, such that v =V x¥ . Note that this

relation implies automatically that V-0 =0, i.e. continuity equation is satisfied.
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