
 

 

 

 

LECTURE 3 

 

  GENERAL FRAMEWORK FOR CONSERVATION 

LAWS IN FLUID MECHANICS. THE PRINCIPLE OF 

MASS CONSERVATION AND RELATED EQUATIONS. 
 

 

 

 

 

 

 



 

 

 

Fundamental Principles of Mechanics tell us what happens with: 

 mass 

 linear momentum 

 angular momentum 

 energy 

during a motion of a fluid medium.  

 

Basic equations of the Fluid Mechanics are derived from these principles.  

 

Additionally, the reference to the 2
nd

  Principle of Thermodynamics may be 

necessary in order to recognized physically feasible solutions. 

 
 

 

 

 

 



CONSERVATION LAWS – GENERAL FRAMEWORK 
 

Consider an extensive physical quantity H. The spatial distribution of this quantity can be 

characterized by means of its mass-specific density h. AT this point we do not precise if the 

field h is scalar, vector or tensor. 

 

Consider the finite control (not fluid!) volume   embedded in the fluid. The total amount of 

the quantity characterized by the density field h is expressed by the volume integral 
 

( )H t hdV


   

 

where   denotes the mass density of the fluid. We ask the fundamental question: what is the 

rate of the temporal change of H? The general answer is 
 

production flow through

dH d dH dH
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dt dt dt dt 
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  
 

 

i.e., The total rate is the sum of two contributions: 

 change rate due to the production/destruction of the quantity H, 

 change rate due to the transport of H by the fluid entering/leaving   through the 

boundary  .  



Note that the second contribution can be expressed by the following surface integral (see 

figure)    
 

flow through
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 
 
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where n 



 υ n

 
denotes the normal 

component of the fluid velocity at the boundary.  

The negative sign in the formula appears due to 

the fact that the normal vector n point outwards, 

so the negative value of n  corresponds to the 

incoming flow (positive – for the outflow).   
 

The general principle of conservation (or rather variation!) of the quantity H can be cast into 

the following form 

producti

source

n

s

o

dH

dt


 
 

where sources  stands for the “source” terms which describe time-specific production or 

destruction of the quantity H in the volume  .  

 

 



The particular character of the source terms depends on the quantity H: 

 

1. Mass of fluid 
 

Then  h 1    and                           ( )H M t dV


    

In this case sources 0  since mass cannot be produced or created! 

 

2. Linear momentum 
 

Then   h  υ   and                                 ( )H t dV


  P υ  

In this case the source term is the sum of all external forces acting on the fluid contained in 

  
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where σ  denotes the stress vector at the boundary  . 

 

 

 



 

3. Angular momentum 
 

Then  h  x υ    and                     ( )t dV


 K x υ   

 

In this case, the source term is the sum of all external moments of forces acting on the fluid 

contained in   
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4. Energy 
 

Here we mean total energy which is the sum of internal and kinetic energy of the fluid. 

 

Then  
21 1

2 2
h e u u      υ υ    and  

 

( ) ( )21
2H E t u dV



     

 

where u  denotes the mass-specific internal energy of the fluid and   is the magnitude of the 

fluid velocity.  



 

The source terms include: 

 work performed per one time unit (power) by surface and volumetric forces 

 conductive heat transfer through the boundary   

 heat production by internal processes and /or by absorbed radiation.  

 

We can write                   ( )

internal heatconduction ofpower of external
sourcesheat throughforce

sources V

s

St P P Q Q







     

where the mechanical power terms are 

 

                                               SP dS


  σ υ     ,     VP dV


  f υ  

and the heat terms are 
 

hQ dS







   q n        ,       hQ dV



    

 

In the above, the symbol hq  denotes the vector of conductive heat flux through the boundary 

  (we will see later that it can be expressed by the temperature gradient) and the symbol h  

stands for the mass-specific density of internal heat sources in the fluid. 

 

 



 

EQUATION OF MASS CONSERVATION 
 

We have already mentioned that for the mass the source terms are absent. Thus, we have 

 

production flow through

dM dM dM
0

dt dt dt 

  

 
 

or, equivalently 

 

( )d
dt

dV dS 0
 

 


     υ n  

 

Since the volume   is fixed we can change order of the volume integration and time 

differentiation. We can also apply the GGO Theorem to the surface integral to transform it to 

the volume one. This is what we get 
 

[ ( )]
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

 
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Finally, since the volume   can be chosen as arbitrary part of the whole flow domain then – 

assuming sufficient regularity of the integrated expression – we conclude that 

 

( )
t

0 


 υ  

 

at each point of the fluid domain. We have derived the differential equation of mass 

conservation! 

 

The obtained form of this equations is called conservative (sic!). However, other equivalent 

forms can be obtained by using standard manipulations with differential operators 
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In the index notation 
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Note that: 
 

1. If the flow is stationary, i.e. none of the parameters is explicitly time-dependent, then the 

equation of mass conservation reduces to the form 
 

 

( ) 0       υ υ υ  
 

 

2. If const   then the mass conservation equation reduces to the particularly simple form 

(the continuity equation) 

 

0 υ  
 
 

In words: the divergence of the velocity field of the constant-density fluid (liquid) 

vanishes identically in the whole flow domain. Note that this condition is the geometric 

constrain imposed on the class of admissible vector fields rather than evolutionary equation.  

 

 

 

 

 

 



 

TWO-DIMENSIONAL INCOMPRESSIBLE FLOW. STREAMFUNCTION. 
 

The streamfunction is a very convenient concept in the theory of 2D incompressible flow. The 

idea is to introduce the scalar field ( , , )1 2t x x   such that  

 

21 x         ,      
12 x    

 

Note that the continuity equation  (see  Lecture 3)        
 

1 21 2x x 0     
 

is satisfied automatically. Indeed, we have 
 

                                                , ,1 2 1 2 2 1x x x x x x1 2 0          

 

The streamfunction has a remarkable property: it is constant along streamlines. 
 

To see this, it is sufficient to show that the gradient of the streamfunction is always 

perpendicular to the velocity vector (why?). It is indeed the case: 
 

1 21 2 1 2 2 1x x 0                υ  

 



Consider a line joining two points in the (plane) flow domain. We will calculate the 

volumetric flow rate (the volume flux) through this line.  

 

  We have 
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The volumetric flux through the line segment is equal to the difference of the 

streamfunction between the endpoints of this segment.  
 

Note: the scalar stream function can also be defined for axisymmetric flows. In general 3D 

flows, the vector stream function Ψ  can be introduced, such that v Ψ . Note that this 

relation implies automatically that 0 υ , i.e. continuity equation is satisfied. 
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