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DIMENSIONLESS FORM OF THE NAVIER-STOKES EQUATION 
 

The Navier-Stokes equation for an incompressible flow can be written in the following form 
 

( )
1

p
t





     



υ
υ υ υ f  

 

In order to make comparisons between various flow it is necessary to introduce the 

dimensionless form of the Navier-Stokes Equation. To this end we choose reference or 

scaling quantities for:  
 

 time  t T t ,  

 linear dimensions j jx L x ,   

 velocity Vυ υ,   

 pressure p P p ,  

 volume force Ff f . 

 

In the above, all symbols with wave are dimensionless quantities.  
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Consequently, we have also dimensionless differential operators 

 

dt 1

t dt t T t

  
 

  
    ,       

j

j j j j
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  
 

  
. 

 

The Navier-Stokes equations can be now written as  
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or, after multiplication by L/V
2
 

 

( )
2 2

L P F L
p
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In the above equation, four nondimensional combinations of the scaling quantities have 

appeared.  
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We can define the following similarity numbers  
 

 Strouhal number 
V T

St
L

 , 

 Euler number 

2V
Eu

P


 , 

 Reynolds number 
V L

Re


 , 

 Froude number 

2V
Fr

F L
 . 

 

Finally, the Navier-Stokes equation can be written in dimensionless form as follows  
 

( )
1 1 1 1

p
St Eu Re Frt




      


υ
υ υ υ f  

 

Note that the coefficient at dimensionless convective acceleration is equal 1. The remaining 

terms in this equations are multiplied by reciprocals of the similitude numbers. We can say 

that each similitude number is a measure of significance of a corresponding term in 

comparison with the convective acceleration term.  
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More physically:  the similitude numbers tell us how important (or large) are effects 

related to flow unsteadiness, pressure forces, viscous forces and gravity forces in 

comparison to the inertial forces (related to the convective part of the fluid 

acceleration). 

 

 For instance, the Reynolds number tells us how important are viscous effects – apparently 

they become negligible if the Reynolds number is very large. Similarly, the effect of the 

volume forces becomes not much important when the Froude number is large, and so on. 

However, this general interpretation is correct providing the time and space scaling 

quantities are relevant for the physical effect of interest!  

 

Let’s consider a typical example: 

 

 In a viscous flow past a wing of an airplane the boundary layer exists in the close vicinity 

of the wing’s surface. Typically, the length scale in define as the wing’s chord and the 

reference velocity is the velocity of the free stream far from the airplane. Since the 

kinematic viscosity of air is of the order 10
-5

 (m
2
/s) the Reynolds number is typically very 

large, say, of the order of millions. It might suggest that the viscous term can be neglected 

and such conclusion is essentially correct for the flow outside the boundary layer. For that 

reason, the large scale flow around the airplane can be adequately model by the Euler 

equations. However, inside the boundary layer viscous effects are never negligible!.  
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The misinterpretations of the large Reynolds number in such case is the result of choice of 

an irrelevant length scale: what really matters for the boundary later flow is not a wing’s 

chord but rather the boundary layer’s thickness which is smaller by several orders of 

magnitude than the wing’s chord!.  

 

Conditions for dynamic similitude of flows: 
 

We say that two flows are dynamically similar if: 

 

 they are geometrically similar, e.g. the shapes (but usually not dimensions) 

of the flow domains are the same, 

 

 all similitude numbers computed on the basis of the corresponding scaling 

quantities are the same for both flows. It means that the dimensionless 

governing equations in both cases are identical, 

 

 the dimensionless form of the initial and boundary conditions are identical. 
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The above conditions are very important in Experimental Fluid Mechanics. where 

investigations are usually carried out with the use of re-scaled models of a real technical 

object (a model of an aircraft, a model of a car and so on). On the other hand, these 

conditions are very rigorous and it is usually very difficult (or impossible) to meet all 

of them simultaneously.  

 

Consider the investigation of the sailing boat  model made in the scale 1:16, which is carried 

out in the towing basin. The aim of the investigation is to assess a hydrodynamic drag of the 

boat.  

 

Clearly, the geometry of  the model and the real flows are not strictly similar – anyway, the 

real object is not be design  to sail inside  a 16-times magnified copy of the towing basin! In 

fact, the experimentalists assume (reasonably) that the measurements they conduct will give 

relevant results because the boat’s model of the boat is relatively small (or, equivalently, the 

basin is sufficiently large) and all kinds of “side walls” and “bottom” effects are negligible. 

 

Secondly, it is nearly impossible to keep both Reynolds and Froude numbers the same as in 

a real flow – it is actually a kind of self-contradictory demand. Indeed, to keep the same 

value of the Froude number, the model should move 4 times slower than the real object, 

while keeping the same Reynolds number would require to move the model 16 times faster!  



 7 

The latter statement assumes that the fluid inside the experimental basin is the same water as 

in real conditions. It should be noted that  - at least in principle – we could play with fluid 

viscosity (but water is already the rather low-viscosity fluid!) or with the gravity (towing 

basin inside the dropping elevator?)   

 

What is actually done is the splitting of the experiment into parts devoted to a different 

regime of the yacht’s motion: for small velocity the frictions drag dominates and the 

similitude with respect to viscous effect is crucial, while for the fast motion the drag is 

mostly due to gravitational effects (surface waves generated by a moving boat) and then the 

Froude number should be kept the same (or close). 
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APPLICATION OF DIMENSIONAL ANALYSIS FOR PREDICTION OF 

MATHEMATICAL FORM OF PHYSICAL LAWS 
 

A majority of physical quantities are dimensional ones, i.e., they are expressed in certain 

physical units. In Mechanics, there are 3 basic physical units: 

 the mass unit [M] (in the SI system of units  [M] = kg) 

 the time unit [T] (in the SI system of units [T] = s)  

 the length unit [L] (in the SI system of units [L] = m) 

 

A unit of any other mechanical quantity is the product of different powers of basic units. 

For instance: 

 the unit of acceleration is [ ] [ ] [ ] 2 2A L T m s      

 the unit of energy is [ ] [ ][ ] [ ]2 2 2 2E M L T kg m s J       

 the unit of pressure is [ ] [ ][ ] [ ] /1 2 2P M L T N m Pa     
 

Imagine that certain mechanical problem involves the following set of physical quantities 

{ , ,.., }1 2 nq q q . Let us assume that there exist at most r dimensionally independent quantities 

in this set, i.e., such that the unit of any of them can be expressed by the units of remaining 

ones (the example will follow shortly). Clearly, in mechanics, r ≤ 3.  
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Next, let us assume that the physical law related to this problem can be written in the 

implicit functional form as follows: 

 

( , ,..., )1 2 nf q q q 0  

 

The famous Buckingham’s Pi Theorem (1914) states that this law can be equivalently 

written in the dimensionless form 
 

( , ,..., )1 2 n r 0       
 

where n-r  numbers , ,...,1 2 n r     are dimensionless combinations of the quantities 

, ,..,1 2 nq q q . 
 

Consider two practical examples.  
 

Example 1: Stationary flow of a viscous liquid in the straight pipe 
 

We want to predict the form of the formula expressing the pressure drop Δp in the viscous 

liquid flow (density ρ and viscosity μ) along the pipe segment of the length l and diameter d. 

Let the average flow velocity is w. Additionally assume that the pipe wall is rough (not 

smooth) and the characteristic high of the surface roughness is s.  
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We look for the functional formula of the form 
 

( , , , , , , )f p w l d s 0     
 

According to Pi Theorem we should be able to write this law in the dimensionless 
 

( , , , )1 2 3 4 0       
 

Indeed, the maximal number of dimensionally independent quantities is 3 – it is enough to 

take the velocity w, the density ρ and the diameter d  (explain!). 
 

Now, four nondimensional parameters , ,..,k k 1 4   will be constructed as follows. 

We seek for the first parameter is the form of 1 w d p     . The appropriate 

calculations are:  
 

[ ] ( ) ( ) ( )3 2

kg kg 1 3 1 2 0 0 0m
1 s m ms

m kg m s kg m s               
 

 

, ,

, ,

1 0 3 1 0 2 0

2 1 0

    

  

        



    
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Hence we have obtained the first dimensionless number

 
1 2

p

w





  

Similarly, the second parameter is sought in the form 2 w d l    . Then 
 

[ ] ( ) ( ) ( )3

kg 1 0 0 0m
2 s m

m m kg m s kg m s             

, ,

, ,

0 1 0 0

0 0 1

   

  

     



   

 

 

Hence, the second dimensionless number is 2

l

d
   . Analogous arguments lead also to the 

third number, which is 3

s

d
 

  
 

 

It is left for the Reader to show that the last number is defined as 4
w d wd

 



 

  

and 

this is simply the inverse of the Reynolds number. 

 



 12 

We conclude that the functional relation between the parameters of our problem can be 

written in the form of  

( , , , )2

p l s
d d wdw

0 


   

 

or (replacing inverse of Re by Re itself) 
 

( , , )2

p l s wd
d dw

F


  

 

It means that the pressure drop along the pipe must be expressed by the following formula 
 

ˆ( , ) ( ,Re)2

p 2s wd l1 1
2 2d dw

p s w


      

 

The function ˆ( ,Re)s   is called the coefficient of distributed pressure losses. Note 

that for the Hagen-Poiseuille flow in the smooth pipe we have s = 0 and 
 

Re(Re) 64    

 

This formula corresponds to the laminar flow described by the exact solution of the 

stationary Navier-Stokes equation (see Lecture 8). Such solution becomes unstable (and 

hence such flow is not observable in natural conditions) if Re exceeds the value of about 

2300. The pipe flow with larger Reynolds number becomes turbulent.  
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For the fully developed turbulent flow inside a smooth pipe (no wall roughness) the 

coefficient of distributed pressure losses λ  is well approximated (at least for Re not larger 

than – say – 10
5
) by the Blasius formula 

 

.
(Re)

Re4

0 316
    

 

For nonsmooth walls one can use the Moody diagram  which summarizes the results of 

experimental investigations 
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Example 2: Aerodynamic drag of an obstacle 
 

Let the quantities involved are: the reference surface S (says how large the obstacle is), air 

density  , air pressure p  and the velocity V  of the free stream, dynamic viscosity   and  

the magnitude of the aerodynamic drag force DF .  The Reader is recommended to follow 

the procedure as in the Example 1. The results is 
 

( , )2

pD
2 V S V

F

V S


 





   
 

  

 

In fact, it is customary to re-write the above formula in a following way 

 

( , )2

pV S 21
D D 2V

F C V S
 

 

 
   

 

The nondimensional quantity CD is called the coefficient of aerodynamic drag. It is the 

function of two dimensionless numbers. The first one can be easily recognized as the 

Reynolds number Re (where S plays the role of the characteristic length scale).  
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The meaning of the second one becomes more obvious when the speed of sound a  in the 

free stream is used. We will see in the Lecture 13  that the speed of sound in the Clapeyron 

gas is equal 
 

,p
P Va c c

 

    

Thus      
2

2 2 2

p a 1
V V M  
 

   
   

 

The ratio M V a    is called the Mach number (of the free stream). Finally, the 

formula for the drag can be written as 

 

( , ) 21
D D2F C Re Ma V S   

 

If the Mach number is low (say, lower that 0.3) then compressibility effects are negligible 

and the coefficient of the aerodynamic drag (as well as the lift force and other aerodynamic 

characteristics) depends only on the Reynolds number (and the shape of the obstacle!). 

-------------------------------------------------------------------------------------------------------------  

 

 


