
 

 

 

 

LECTURE 8 

 

NAVIER-STOKES EQUATION 
 

 

 

 

 

 

 

 

 



 

This lecture begins with derivation of the equation of motion of Newtonian fluids. 

Earlier, we have derived the general form from the 2nd Principle of Newton’s 

dynamics 
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Let us recall that the constitutive relation for Newtonian fluids reads 

 

( ) jk i2
ij ij3

j ik

p
x x x

 
    

  
  
     

 
     

  
 

 

We have to calculate the explicit form of the first term in the right-hand side of the 

equation of motion: 
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After the obtained formula is inserted into the equation of motion, we get 
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In the frame-invariant form, our equation of motion reads  
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This is the , the central equation of the dynamics of Navier-Stokes Equation (NSE)  

Newtonian fluids. 
 

For an incompressible fluid 0 υ , so the NSE simplifies to 
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often also written in the form 
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where /    is the kinematic viscosity of fluid (the SI unit is m2/s).  

The index form of the “incompressible” NSE is 
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The Navier-Stokes Equation is the vector equation (or three scalar equations) with four 

unknown fields:  

 three Cartesian components of the velocity field and  

 the pressure field.  

 

For an incompressible fluid it is sufficient to add the continuity equation 0 υ  and 

appropriate initial and boundary conditions to obtain a solvable mathematical problem. 

However, “solvable” does not mean “easy to solve”! 
 

On the other hand, we need more equations when the fluid is compressible, since we have 

one more unknown – the density  .  This additional equation is the scalar equation of 

(total) energy conservation. We will derive this equations in one of the next lectures. 

 

Additional complication comes from the fact that viscosity is temperature dependent! 
 

 

 

 

 

 

 

 



 

As a rule, viscosity of liquids diminishes with rising temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

For gases, the tendency is opposite. Typically, one can use the Sutherland formula 
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(for air 110S K , 
61.5 10C    ...) 

 

 



 

We will discuss shortly the problem of boundary conditions for the Navier-Stokes Equations.  

We skip discussion of the compressible case, leaving this issue to more advanced courses. 
 

In general, we have several kinds of the boundaries of the flow domain: 

- solid boundaries:  surfaces when the fluid is in contact with solid (rigid or 

elastic) walls 

- inflows and outflows: surfaces through which stream of fluid enters or leaves the 

flow domain; such (artificial) boundaries are typical more modeling internal 

flows 

- far-field boundaries: surfaces which are artificially introduced to bound a flow 

region around an immersed body (like an airplane) to the finite subset in space; 

such boundaries are typical for  external flows 
 

For liquid we may also have free-surface conditions (interface between liquid and ambient 

atmosphere). 

 

The boundary condition at solid and impermeable surfaces (of the immersed bodies) is 

formulated as  
 

υ u  at       ,    u - velocity of the boundary points 

 

 



 

The physical meaning of the this conditions is that viscous fluid adheres to a solid surface, 

i.e. the velocities of the fluid and of the surface are equal (the no-slip condition). 
 

What concerns the inlet/outlet conditions, we have a whole repertoire of possibilities. For 

instance, at the inlets one can prescribe the whole velocity vector or just its normal 

component plus distribution of the tangent component of the stress vector. At the outlet 

sections one can again prescribe the pressure and also assume that the tangent component of 

velocity is zero. Other options – better or worse suited for a particular physical situation – 

exist. However, some combinations are not allowed. For instance, it is incorrect to impose 

simultaneously inlet/outlet distribution of the normal velocity and normal stress (or 

pressure). 

 

What concerns the far field, the boundary conditions are imposed to approximate the exact 

condition 

                                                                    
| |
lim 



x

υ υ  

 

The simplest (but not the best) idea to is to “shift” this condition to the outer boundary of the 

finite fluid domain. Better approach relies on the idea of matching “internal” solution of the 

full NSE with some “outer” solution of some simplified flow model. Details of such approach 

are usually problem-dependent, thus we will not go into details. 

 



 

It natural to ask if any analytical solutions to NSE exist. The answer is positive, 

however only few of them can be found using elementary techniques. 

 

The standard examples of the analytical solutions to NSE include: Poiseuille-Couette 

flow in the plane (2D) channel, flow in the straight duct (in particular with circular or 

elliptic section), plane flow between two coaxial cylinders (Taylor-Couette flow) as 

well as few examples of time-dependent flows. 
 

 

 

 

 

 

 

 

 

 

 



 

Example 1: Poiseuille-Couette flows 
 

 

Flow is driven by movement of the upper wall 

(velocity of the wall is purely horizontal and equal 

WU ) and given pressure gradient. 

 

 

The velocity field has only streamwise component 
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Continuity equation is satisfied automatically. The equations of motion reduce to very simple 

form 
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Thus, pressure changes only in the flow direction. In the first equations, each term must be 

equal to a constant (they depend on different spatial coordinates).  



 

We have 
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 The velocity can be found as follows 
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The integration constants A and B are to be determined using the boundary conditions 
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After simple algebra we arrive at the final solution 
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We have two special cases: 
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Example 2: unidirectional flow in the duct with constant section 

 

Flow is driven by the streamwise pressure gradient. 

There exist one nonzero component of the velocity field: 
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Similar argument as before leads to the conclusion that pressure depends only on x3 and the 

pressure gradient is constant along the duct: 
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The equation of motion becomes again very simple (Poisson equation) 
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where Ω denotes the section of the duct.  



 

The solution to the above boundary value problem may be found in the analytic form for a 

number of shapes. In general, the approximate solution can be found using appropriate 

numerical methods. 
 

Special case: circular pipe  

 

 

It is natural to use cylindrical polar coordinate system. Assuming that the flow field is 

axisymmetric, the equation of motion reduces to the following ordinary differential equation 

(we use the symbol 3w  ) 
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The boundary conditions are: 
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The solution to the above boundary value problem can be found in the following form 
 

( ) [ ( ) ] [ ( ) ]2

0

2 2KR r r
4

w

R 0 R
w r 1 w 1


   

 
 

This is the Hagen-Poiseuille flow. 

 



 

 Let us compute the volumetric flow rate of thus flow: 
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This is the Hagen-Poiseuille formula. Note that the flow rate is proportional to the pressure 

gradient and inverse proportional to fluid viscosity. 
 

We will show that some dimensionless measure of the flow resistance can be defined. To this 

aim let us calculate the average velocity 
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Then, the pressure gradient needed to sustain the flow rate Q can be recalculated into 

dimensionless coefficient of distributed pressure losses λ: 
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In the above, we have introduces a very important dimensionless quantity – the Reynolds 

number Re .
 
We will say more about this number in the lecture about dynamic similitude of 

flows.
 

 



 

Other cases with analytical solution include: the elliptic pipe, the pipe with equilateral 

triangular section and the pipe with rectangular section (for the latter, formulas have the form 

of the infinite series).  

 

Also, analytical solutions exist for a few simple nonstationary flows (e.g., Womersley flow, 

i.e., flow in the pipe driven by an oscillatory pressure gradient). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX 
 

The Navier-Stokes Equations (incompressible flow) in cylindrical/polar 

coordinates( , , )R z   
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Continuity equation:               
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