
 

 
 

LECTURE 15 
INTRODUCTION TO HYDRODYNAMIC INSTABILITY 

AND TURBULENCE 
 

 
 

 
 



General rule: when the Reynolds number corresponding to a given laminar flow 

increases, the flow gets more complicated and finally undergoes a transition to a 

turbulent state. The transition problem is initiated by external disturbances, which are 

usually quite small and uncontrollable.  

 

The crucial question is about flow stability: how large disturbances can be 

absorbed by a given flow without changing its long-term form?    

 

General mathematical approach 
 

( )1υ  - velocity of the basic flow; 

( )2υ  - velocity of the flow in the same domain but with different initial conditions. 

Convenient measure of the global discrepancy between two flows  

 

 

 
     
 

Note that E(0)  is known; it can be computed since we know ( ) ( )1 t 0υ  and ( ) ( )2 t 0υ  
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The flow is (asymptotically) stable if   lim ( )
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Scheme of different scenarios 

 
 
 
 
 
 
 
 
 
 
 
 
 

For Re > ReL there exists a disturbance field with a shape such that – no matter 

how small – it always leads to a  permanent change of the flow. 

 



Let b  υ υ υ  and bp p p  , where ,( )b bpυ  is the basic flow and ,( )p υ  is the 

disturbance field. We insert the formulae to the continuum and Navier-Stokes 

equations. The terms involving only basic flow parameters will cancel out (the basic 

flow is itself the NS solution); the remaining nonlinear terms involve only the 

disturbances. Since they are assumed small, the nonlinear terms can be dropped. This 

procedure is called the linearization. 

 
 
 

 

 

 

 
 

We have obtained the linear differential system. The functional coefficients depend 

on the known basic flow solution. 
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Velocity disturbances 
vanish at the boundary 

Linearized N-S 
equations 

Continuity equation for 
disturbances 



The general approach to linear stability equations is to seek their solutions in the 

following: 

 

 

 

 

Since the equations are linear, it is sufficient to see what happens with a single 

Fourier mode. We insert it in the equations and get 

 

  

 

 

 

 

 

 

 
 

Nontrivial (nonzero) solutions exist only for certain values (eigenvalues) of the 

complex frequency r   
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Note that the exponential factor can be written as follows : 

 
 
 
 
 
 
 
 
 
 

Particular stability theories have been developed for different classes of 

flows (parallel and nearly-parallel flow, wake flows, mixing layers, 

rotating flows, etc.). 
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Sufficient condition for (absolute) instability is 

that at least one number r  is negative! 



FOUNDATIONS OF TURBULENT FLOWS 
 

Main features of turbulent flow fields: 

 All flow parameters (velocity, pressure, etc.) exhibit highly irregular variations in 

time and space (spatial-temporal chaos). Although in principle turbulent flows 

are believed to be governed by entirely deterministic physical laws, the most 

adequate approach is to treat them as random phenomena and apply to them 

appropriate tools from the theory of stochastic processes. 

 The turbulent flows exhibit very strong mixing and transport properties -  

effectiveness of turbulent mixing and heat transfer is usually by several orders of 

magnitude larger than effectiveness of analogous molecular processes.  

 Turbulence in fluids is a strongly nonlinear phenomenon very closely related to 

the dynamics (generation, advection and diffusion) of vorticity. “Real” 

turbulence can exists in the 3D flows, where the process of vortex tubes 

stretching and tilting is possible. This process is mostly responsible of the 

generation of time scales of vortex motion. 

 Turbulent flow are characterized by a unidirectional “cascade” of energy: large 

vortex structures fed on the mean flow, the smaller-scale motion sucks energy 

from larger scales, finally the smallest-scale “ripples” dissipate due to molecular 

viscosity. This process has some universal properties described by simple power 

laws (e.g. Kolmogorov law). 



 

 

Reynolds averaging procedure 

 

Any dynamic quantity in the turbulent flow description can be expressed as a sum of 

its averaged value (constant or changing slowly) plus fluctuation in the form of rapid 

irregular oscillation around the averaged value. The fluctuations are assumed 

completely random.  

 
 

 
 
 
 
 

Definition of the time average 
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Averaging period 2T should be much longer than 
characteristic time of the fluctuations yet short 
enough to maintain the information of the time 

variation of the averaged flow. 



Average quantity f  depends of time and position. Its spatial derivatives are computes 

as follows  

 

 
 
Hence, Spatial derivative of the average is the average of the spatial derivative – time 

averaging and spatial differentiation commute! 
 

 

Time derivative is a bit more tricky … 
 

 

 
 

… but the conclusion is similar. 
 

Instantaneous flow field is the sum of the average and the fluctuating parts 
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We insert these expressions to Navier-Stokes equations … 

 

 

 

 

 

… and apply the time-averaging procedure. The result the RANS (Reynolds-

Averaged Navier-Stokes) equations 
 

  
 
 
 

Note that the RANS eqs. differ from the NS eqs. by an additional term in the right-

hand side, i.e. ( )
ix i k   .  

 
We introduce a symmetric tensor called the Reynolds tensor 
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The averaged velocity satisfies the continuity equation  div 0υ . 
 

In contrast to the NS eqs, the RANS system is not closed! We need to determine the 

components of the RT. The concept is to express these components by the averaged 

values … 

 
 

 

 

 
Closure hypothesis: to formulate some explicit form of the above formula. Such 

formula would express the features of the flow rather than physical properties of the 

fluid! 

 

We can write RT in the following way: 

 
 
 
 
where the operator Tr denotes the trace of the tensor.  
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We have 
 

 

 
 
 
where the symbol   denotes the turbulent kinetic energy. Thus, we have 
 

  
 
 
Next, we can write the “turbulent” term in the RANS eqs. as follows: 
 

 
 
 
Once inserted into the RANS eqs., the result is 
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The following objects are present in the RANS eqs.: 

 
 
  
 
 

 
 
 
 
 

Note that both TST and the averaged deformation rate tensor 
 
 
 
 
 

have the zero trace.  
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turbulent pressure 

turbulent stress tensor (TST) 



Thus, the following (and commonly accepted in engineering applications) hypothesis 

can be formulated: there exists a scalar field of a turbulent viscosity turb  such that 

 
 
or, in  components … 

 
 
 
 

µturb – the property of the flow, not the physical property of the fluid (like the 

molecular viscosity  ). 
 

Imagine, we can determine µturb in terms of the averaged quantities. It so, the 

turbulent motion is described by the following set of equations: 
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If µturb is known as a function of averaged quantities then the above equations 

(subject to appropriate boundary and initial conditions) can be solved for 

, , ,k k 1 2 3   and turbp .
 

 

Determination of µturb 
 

Classification is based on the number of additional differential equations which 

are added to the RANS system is order to make it closed. We have: 

 Zero-equation models: no differential equations, just some algebraic relations 

 One-equation models: one differential equation (transport equations for turbulent 

viscosity) plus some additional algebraic relations (eg. Spalart-Allmaras model) 

 Two-equations models: two additional transport equations are added to RANS 

eqs. 
 

 

1. Mixing length theory 
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velocity            component 

 l - mixing length (determined experimentally) 



 

2.  κ – ε method 
 

 

  

 
 

The fields of κ and ε are computed from two additional partial differential equations 

which are solved (numerically) simultaneously with the RANS and averaged 

continuity equations.   
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κ -  turbulent kinetic energy 

ε – turbulent dissipation field (mass-specific power 
dissipated to heat by turbulent fluctuations) 


