
 

 

 

LECTURE 1 

 

ELEMENTS OF STATICS OF FLUIDS 
 

 

 

 

 

 

 
 

 



 

BALANCE OF EXTERNAL FORCES 
 

 

Total surface force          
S p dS



  F n
 

 

Total volumetric force     
V dV



 F f  

 

Balance of forces             S V F F 0  

 

 

We obtain the integral form of the balance 

equation 

 

p dS dV





   n f 0  

 

 

 



 

 

We need a differential form of the balance equation. To this aim, we will transform the 

surface integral into the volume one. 

 

1 1 2 2 3 3p dS pn dS pn dS pn dS
      

     n e e e  

 

Consider one of the above scalar integrals … 

 

[ , , ] [ , , ]
GGO

the

1

r
1

o em

p
pn dS p 0 0 dS div p 0 0 dV dV

x
    


  


   n  

 

We conclude that 
 

, , ,k

k

p
pn dS dV k 1 2 3 p dS pdV

x
    


    

   n
 

 

Thus, the balance equation takes the form of      ( )p dV


   f 0  

 



 

Since the volume Ω can be chosen arbitrary, the above equality implies that the integrand 

vanishes identically in the whole volume of fluid. We get the following differential equation 

 

p   f 0  

 

Do we need to worry about the balance of moments of the forces?  
 

These moments are equal 
 

S p dS


  M x n          ,        
V dV



 M x f
 

 

The fluid is motionless if and only if     S V M M 0  

 

We will show that this condition is satisfied automatically! Again, consider the surface 

integral 

 

( ) ( ) ( )1 1 2 2 3 3p dS p dS p dS p dS
      

         x n e x n e x n e x n  

 

We will transform this surface integral to the volumetric one … 



Consider the first integral … 

 
 

( ) ( )

[ , , ] [ , , ] ( ) ( )

( )

3 2

3 2

1 2 3 3 2

2 3 2 3x x

2 3 1x x

p dS p x n x n dS

0 0 px dS 0 px 0 dS px px dV

x p x p dV p dV

 

  

 

 

 
 

 

 
 

   

        

     

 

  

 

x n

n n

x

 

 

 

In general, we have          

( ) ( )p dS p dV
 

   x n x  

 

 

The condition for the balance of the moments can be written as 

 
 

( )p dV


    x f 0  

 

 

 



 

The above equation is actually the identity as the integrand vanishes identically at any point of 

the fluid volume. Thus, there is only one equation of fluid statics, namely 

 

p   f  

 
Is this equation always solvable? The answer is NO! 
 

The solution exists only if the right-hand side of this equation (i.e.,  f ) is the potential field. 

This means that the rotation of this field should be identically equal to zero 

 

( ) ( )rot   f f 0  
 

 

Let us remind that the rot operator is defined as follows (in Cartesian coordinates) 

 
 

( ) ( ) ( )
1 2 3 2 3 3 1 1 2

1 2 3

3 2 1 1 3 2 2 1 3x x x x x x x x x

1 2 3

rot w w w w w w

w w w

        
        

      

e e e

w e e e  

 

 



 

The Reader is recommended to verify the following identity (exercise!) 
 

( )       f f f 0  
 

The above equality is the necessary condition for the fluid to remain in rest in the external 

field f. It does not tell us much, unless we assume something more about properties of  the 

field f. 
 

Assume that the f is the potential force field. It means that there exists such scalar field Φ, 

that 

grad  f  
 

Then                                rot rot grad     f f 0  
 

and                                                     ( )    f f 0  
 

 

We conclude that the gradient of density in a motionless fluid is everywhere aligned with 

the force field, i.e. 

 f  
 

 



 

If we re-write the balance equation as           
1

p

  f  

 

then for the potential force field f we also have 
 

2

0

1 1 1 1
0 p p p p

   

   
             

   
 

 

We conclude that                                          p   
 

 

Thus, the surfaces of constant density and surfaces of constant pressure (isobaric) 

coincide. This implies that there exists a global relation between density and pressure 
 

( )p   
 

We say that the fluid is in barotropic conditions (or – shortly – the fluid is barotropic). This 

is a very special situation because – in general – we need both pressure and temperature to 

determine density (generally, the fluids are baroclinic). Note that if the barotropic fluid 

remains in rest then the external force field must be a potential one. In other words: the 

barotropic fluid cannot stay in rest in the force field which is not potential. 



 

If the fluid is barotropic then the differential equation of fluid statics can be solved 

(integrated). To this aim, we define the function (sometimes called the pressure potential) P 

such that 

( )
( )

1
P p

p
 

 
Thus, the function P can be defined as the indefinite integral        

 

( )
( )

dp
P P p

p
  

 
 

Next, we define the composite function as follows  ( ) [ ( )]P P px x . The derivatives with 

respect to spatial variables are 
 
 

( ) [ ( )] ( ) , , ,
k kx x
P P p p k 1 2 3 

 
 x x x  

 

Equivalently, we have the following relation 

 

1
P p


      



 

 

Since the force field f is assumed potential, there exist the scalar field Φ such that   

 

f . 

 

Then, the equation of statics can be written in the following form         

 

P    
 

 

from which we conclude that the pressure and force field potential differ by the additive 

constant 

P const   
 

 

 

 

 

 

 

 



 

EXAMPLES 
 

1. Constant-density fluid (liquid) in the uniform, unidirectional gravity field 
  

 

Assume that                  [ , , ]0 0 g f  
 

The potential of f is      gz const     
 

Since density is fixed we have    /P p   
      

Thus           p C gz C       
 

 

The value of the pressure constant should be determined. Usually, the pressure at certain point 

(or points) of the fluid volume is known. For instance, the pressure at the free surface is equal 

to the ambient pressure. Then, we can write 
   

( ) a ap H p C gH C p gH        
 

Thus, the final pressure distribution is                              ( ) ( )ap z p g H z    
 

Note that the isobaric surfaces are horizontal               p cont z const    
 



 

2. Fluid in the combined force field in the noninertial reference frame: uniform gravity plus 

inertial force caused by linear motion with steady acceleration. 
 

Determination of the pressure field goes as 

follows 
 
 

[ , , ]a 0 g ax gz const

p ax gz C



 

       



   

f

 

 

As before, the pressure constant has to be 

determined from additional condition. 
 

 

Isobaric surfaces are described as follows  

 
a
g

p const ax gz const z x const         
 

Note that f is always perpendicular to such surface (the general rule!) 

 



3. Fluid in the combined force field in the noninertial reference frame: uniform gravity plus 

centrifugal force field caused by steady rotation around vertical axis. 
  

It is natural to use the cylindrical coordinate system. 

Then, the force field is given by the formula 
 

[ , , , ] [ , , ]2

r zf f f r 0 g   f  
 

where Ω denotes the angular velocity of rotation. This 

field is axisymmetric (no circumferential component, no 

dependence in the angle θ). The potential function is 

related to the f components as follows 
 

( , ) , ( , )r zr z
f r z f r z  

 
   

 

Clearly, the potential is     

( , ) 2 21
2

r z r gz const     
 

The corresponding pressure field is              ( , ) 2 21
2

p r z r gz const     
 

Note that the isobaric surfaces are the axisymmetric and parabolic 
 

( )
2 2

2g
p const z r r const     

 

 

Note: more examples will be demonstrated during the tutorial meetings. 



THE LAW OF ARCHIMEDES 
 

 

We will show the formal proof of the most classical 

results of the hydrostatics known as the Law of 

Archimedes. 

  

We will calculate the total hydrostatic force acting 

on the body immersed in the motionless liquid 

 

 

( ) ( )

| |

volume of
displaced

liquid

s a a 3

z z

p dS p gz dS p gx dV

g dV g

  



 

  

 

         

     

  



F n n

e e G  

 

We get the well-known result: the reaction is directed against the gravity force, i.e., 

towards the free surface (this is why we call this reaction a displacement force) and its value 

is equal to the weight of displaced liquid. 

  



 

We will show that the displacement force vector is applied at the geometric center pf the 

immersed body. To this aim we calculate the hydrostatic moment with respect to the origin of 

the coordinate system. We have the following 

 

 

0

0

0

( ) ( )

( ) ( )

( )

z

C

a a

a

z C z C S

p dS p gz dS p dS

g z dS p dV g z dV g z dV

g z dV g dV g

  

   

 





  

   

  





         

         

       

  

   

 

x

e

M x n x n n x

n x x x x

x e x x e x F

 

 

The obtained equality means that the vector  SF  is applied Cx  as stated. 

 

 

 

 

 



STABILITY OF A LAYER OF GAS IN THE UNIFORM GRAVITY FIELD 
 

Consider motionless layer of gas under action of the 

uniform vertical gravity field. We assume that all 

thermodynamic parameters are the functions of the 

vertical coordinate z.  
 

Consider the “virtual” adiabatic displacement of the fluid 

element from its original position z to the slightly higher 

level z+Δz  (Δz > 0). After this displacement the pressure 

in the element will adjust to the pressure ( )p z z  

while its entropy remains the same (virtual displacement 

is adiabatic and reversible). Thus, its specific volume υ 

will become different that the value corresponding to static configuration – the motion must 

appear. The motionless layer of gas is stable if the fluid element shifted upwards sinks 

back to its original position, i.e., when the following inequality holds 
 

[ ( ), ( )] [ ( ), ( )]p z z s z z p z z s z 0          
 

Since Δz is arbitrarily small, the above condition is equivalent to    

p

ds
0

s dz

 
 
 





. 

 



We will show that this condition can be re-formulated in terms of the vertical temperature 

gradient. To this aim, we have to play a bit with thermodynamic relations. First, we will show 

that 

p pp

T

s c T

     
   

    
 

Indeed, recall that       dQ Tds   ,  ,p v

p p v

dQ ds ds
c T c T

dT dT dT

     
       
     

 

Then 

p

p p p p p pp

cs T

T s T T s s c T

                    
              

                
 

 

Since , pT c 0  the condition of stability can be re-written as       
p

ds
0

T dz

 
 

 
 

 

Next, most substances expand while being heated (at constant pressure), thus      
p

0
T

 
 

 
 

We conclude that the condition of stability of the gas layer is:       
ds

0
dz

  



If we consider the specific entropy s to be a function of pressure and temperature ( , )s s p T
, then the vertical gradient of entropy can be expresses as 
 

pT

ds s dp s dT

dz p dz T dz

   
    

   
 

We have already seen that    
p

p

cs

T T

 
 

 
.   We will also show that    

pT

s

p T

   
   

   
. 

 

To this aim, consider the free enthalpy (Gibbs function) g  defined by the formula (u denotes 

the specific internal energy of gas) 
 

u p Ts  g  
 

 

Let’s calculate the full differential of this function. Using the 1st Principle of Thermodynamics 

we get 

( ) ( )

dQ Tds

d du d p d Ts du pd dp Tds sdT dp sdT   



         g  

From the above we conclude that 
 

,
p pT T

g s
s

p T T p




         
           

         

g
 

 



 

Using the above formulae, we can write the stability condition as follows 
 

p

p

cds dT dp
0

dz T dz T dz

 
   

 
 

 

The last step is to use the stability equation to calculate the pressure gradient 
 

dp g
p g

dz
 


      f  

We get the inequality                      
p

p

c dT g
0

T dz T





 
  

 
 

 

or, equivalently                                  

p

gTdT

dz c


          

where 
p

1

T






 
  

 
is the thermal expansion coefficient.  

For the Clapeyron gas, we can calculate β using the equation of state, namely 
 

p RT   ,  
p

R R 1

T p p T






 
    

 
 



Thus, the final form of the stability condition is      

p

gdT

dz c
  . 

 

For the atmospheric layer near the Earth’s surface we have . ,2

m J
p kg Ks

g 9 81 c 1005


  . 

Thus, the stability condition is      . K
m

dT
0 0098

dz
  . 

Summarizing, we can write 
 

( )

( )

( )

p

p

p

g
c

g ds
c dz

g ds
c dz

s const neutral balance

dT
0 stable

dz
0 unstable









  

    

   

 

 

Note that the neutral gradient of temperature in the (ideal) atmospheric layer near the Earth’s 

surface is approximately equal to the drop by 1 degree per each 100 meters of altitude. If the 

layer is unstable then the motion will appear spontaneously. Such motion of gas caused by 

thermal/gravitational instability is called convection.  

------------------------------------------------------------------------------------------------------------ 


