
 

 

 

 

 

 

 

LECTURE 7 

STRESS IN FLUIDS. CONSTITUTIVE RELATION AND 

NEWTONIAN FLUID. 

 

 

 

 



 

MATHEMATICAL MODEL FOR INTERNAL FORCES IN FLUIDS. STRESS TENSOR. 
 

According to Cauchy hypothesis, the surface (or interface) reaction force acting between 

two adjacent portions of a fluid can be characterized by its surface vector density called the 

stress.  
 

Thus, for an infinitesimal piece dA of the interface 

1 2   , we have (see figure) 
 

    d dAF σ       and     
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 F σ  

The stress vector σ  is not a vector field: it depends 

not only on the point x but also on the orientation of 

the surface element dA or – equivalently – on the 

vector n normal (perpendicular) to dA at the point x.  

 

 
From the 3rd

 principle of Newton’s dynamics (action-reaction principle) we have 
 

( , ) ( , ) σ x n σ x n  
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We will show that the value of stress vector σ  can be expressed by means of a tensor field. To 

this aim, consider a portion of fluid in the form of small tetrahedron as depicted in the figure 

below. 

The front face ABC  belongs to the plane 

which is describes by the following formula 
 

             ( , ) j jn x h n x    ,   h – small 

number. 
 

The areas of the faces of the tetrahedron are S, 

S1, S2 and S3 for ABC , OBC , AOC  and 

ABO , respectively.  

Obviously, ( )2S O h . 

 

Moreover, the following relations hold for 

j = 1,2,3: 

         

cos[ ( , )] ( , )j j j jS S S S n   n e n e  

 

The volume of the tetrahedron is      ( )3V O h . 

 

x1

x3

x2

0



n=[n1,n2,n3]

-e1
-e2

-e3

A

B

C

D



The momentum principle for the fluid contained inside 

the tetrahedron volume reads 
 

time derivative
of the momentum

v

total volume total surface
f

ol sur

orce force
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d
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

   υ x F F  

 

We need to calculate the total surface force surfF .  

We have: 
 

on ABC :       ( , ) ( , ) ( )O h σ x n σ 0 n     

                          ( , ) ( )ABC 3
surf S O h  F σ 0 n  

on OBC :       ( , ) ( , ) ( , ) ( )1 1 1 O h     σ x e σ x e σ 0 e                                                      

                          ( , ) ( ) ( , ) ( )OBC 3 3
1 1 1 1surf S O h S n O h      F σ 0 e σ 0 e  

on AOC :       ( , ) ( , ) ( , ) ( )2 2 2 O h     σ x e σ x e σ 0 e      

                          ( , ) ( ) ( , ) ( )AOC 3 3
2 2 2 2surf S O h S n O h      F σ 0 e σ 0 e  

 on AOB :      ( , ) ( , ) ( , ) ( )3 3 3 O h     σ x e σ x e σ 0 e                      

    ( , ) ( ) ( , ) ( )AOB 3 3
3 3 3 3surf S O h S n O h      F σ 0 e σ 0 e  
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When the above formulas are inserted to the equation 

of motion we get 
 

( ) ( )
( )

[ ( , ) ( , )] ( )
3

2

3
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vol j
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h O h
O h

d
d S n O h

dt


     υ x F σ 0 n σ 0 e

 

When h 0  the above equation reduces to  
             

( , ) ( , )j jn 0 σ 0 n σ 0 e  
 

In general case, the vertex O is not the origin of the 

coordinate system and the field of stress is time 

dependent.  

 

Hence, we can write      ( , , ) ( , , )j jt n tσ x n σ x e  
 

In the planes oriented perpendicularly to the vectors e1, e2 or e3, the stress vector can be 

written as 
( , , ) ( , )j ij it tσ x e x e  

 

Thus,  the general formula for the stress vector takes the form 
 

( , , ) ( , , ) ( , ) ( , )j j ij j it n t t n t  σ x n σ x e x e Ξ x n  
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We have introduced the matrix Ξ  which represents the stress tensor. The stress tensor 

depends on time and space coordinates, i.e., we actually have the tensor field. 
 

Note that the stress tensor   can be viewed as the linear mapping (parameterized by t and 

x) between vectors in 3-dimensional Euclidean space 
 

: 3 3
j j ij j iE w w E   w e e

 
In particular 
 

ij j i( ) n   n Ξn e σ  

 

i.e., the action of    on the normal vector n at some point of the fluid surface yields the 

stress vector  σ   at this point. 
 

It is often necessary to calculate the normal and tangent stress components at the point of 

some surface. 
 

Normal component is equal              

 

( )

( ) ( , )

inner scalar
pr

n

oduct

   nσ n Ξn n n Ξn  

 



 

Tangent component can be expressed as  

 

 

 

( ) [ ( ) ]

i

n m mij j i i i ij j i ikm k km k
n n n n n n n n


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σ

σ σ n e e e  

or, equivalently as                        

 

( )   σ n σ n  

 

Indeed, using the identity  

 
( ) ( , ) ( , )   a b c a c b a b c   

 

for , ,  a n b σ c n  we obtain 
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CONSTITUTIVE  RELATION 
 

The constitutive relation for the (simple) fluids is the relation between stress tensor   and 

the deformation rate tensor D. This relation should be postulated in a form which is frame-

invariant and such that the stress tensor is symmetric.  
 

Let’s remind two facts: 
 

 The velocity gradient υ can be decomposed into two parts: the symmetric part D 

called the deformation rate tensor and the skew-symmetric part R called the (rigid) 

rotation tensor. 

  υ D R 
 

 Tensor D can be expressed as the sum of the spherical part DSPH and the deviatoric part 

DDEV  

DEVSPH D D D  

 

where                                           ( )SPH tr
1 1

3 3
   DD I υ I     

and                   ( )
ji k

ij ijDEV DEV
j i k

1 1 1
div

3 2 x x 3 x
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

 
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 

 
      

  
D D υ I D   

  



 

The general constitutive relation for a (simple) fluid can be written in the form of the matrix 

“polynomial”  
 

( ) ...2 3
0 0 1 2 3c c c c      Ξ D Ξ I D D DP  

 

where the coefficients are the function of 3 invariants of the tensor D, i.e.  
 

[ ( ), ( ), ( )]1 2 3k kc c I I I D D D . 
 

Consider the characteristic polynomial of the tensor D       
 

( ) det[ ] 3 2
1 2 3p I I I          D D I . 

 

The Cayley-Hamilton Theorem states that the matrix (or tensor) satisfies its own 

characteristic polynomial meaning that 
 

( ) 3 2
1 2 3p I I I     D D D D D 0  

 

Thus, the 3rd power of D (and automatically all higher powers) can be expressed as a linear 

combinations of I, D and D
2
.  

 

Hence, the most general polynomial constitutive relation is given by the 2nd order formula 
 

( ) 2
0 0 1 2

c c c    Ξ D Ξ I D DP  



NEWTONIAN FLUIDS 
 

The behavior of many fluids (water, air, others) can be described quite accurately by the 

linear constitutive relation. Such fluids are called Newtonian fluids. 
 

For Newtonian fluids we assume that: 

 0c  is a linear function of the invariant I1, 

 c1 is a constant,  

 2c 0 . 
 

If there is no motion we have the Pascal Law: pressure in any direction is the same. It means 

that the matrix 
0

Ξ  should correspond to a spherical tensor and  
 

0 0
p p  n n IΞ Ξ  

 

The constitutive relation for the Newtonian fluids can be written as follows  

 

( )

( ) ( )( )

10
I 10 0

2
DEV 3

cc

p 2 p 2             
DΞ Ξ

υΞ I I D I υ I D  

where 

 μ  - (shear) viscosity (the physical unit in SI is kg/m∙s) 

 ζ  -  bulk viscosity (the same unit as μ) ; usually    and can be assumed zero.  
 



 

The constitutive relation can be written in the index notation 

 

( ) jk i2
ij ij3

j ik

p
x x x

 
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  
  
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  
 

 

For an incompressible fluid  we have   
j

j

div 0
x


   


υ υ   and the constitutive 

relation reduces to the simpler form 

 

p 2 Ξ I D 

or, in the index notation 

 

ij ij i j
j i
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Example: Calculate the tangent stress in the wall shear layer. 

 

The velocity field is defined as follows: 
 

( , ) / , ( , )1 1 2 wall 2 2 1 2x x U x H x x 0    
 

and the pressure is constant. At the bottom wall, the 

normal vector which points outwards is [ , ]0 1 n .  

 

 

Then 
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According to the action-reaction principle, the tangent stress at the bottom wall is 
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