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CCIIRRCCUULLAATTIIOONN,,  VVOORRTTIICCIITTYY  AANNDD  SSTTRREEAAMMFFUUNNCCTTIIOONNSS  
 

CCCIIIRRRCCCUUULLLAAATTTIIIOOONNN   
 

Definition: Circulation of the vector field w along the (closed) contour L is defined as 
 

d   w l
L

 

Kelvin’s Theorem: 

 

Assume that: 

 the volume force field  f  potential, 

 the fluid is inviscid and barotropic 

 the flow is stationary.  
 

Then: the circulation of the velocity field υ  along any closed material line L(t) is constant 

in time, i.e. 

 

( )

( ) ( , )d d
dt dt

t

t t d 0    υ x l
L

 

 

 



Proof of the Kelvin Theorem:  
 

Since the flow is barotropic and the volume force field is potential, we can write 

 
1P p         ,       f  

 

Thus, the acceleration (which consists of the convective part only) can be expressed as 

 

( ) ( )P     a υ υ  

 

In order to evaluate the time derivative of the circulation along the material line, it is 

convenient to use Lagrange approach. Thus, the circulation can be expresses as 

 

( ) ( )

( ) ( , ) ( , ) ( , )

0

0

t t

t t d t t d     υ x l V ξ J ξ l
L L

 

 

 where ( , )t 


 x
ξ

J ξ  denotes the Jacobi matrix of the transformation between Eulerian and 

Lagrangian coordinates.  

 

 

 



 

Then,  the time derivative of the circulation is evaluated as follows 
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( ) ( )
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( )

t.
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where the relation ( , ) ( , )t t t J ξ V ξ  has been used. 



VVVOOORRRTTTIIICCCIIITTTYYY   
 

As we already know, the vorticity is defined as the rotation of the velocity:    
 

rot υ υω  

 

Definitions: 
 

 A vortex line is the line of the vorticity vector field. At each point of such line, the 

vorticity vector is tangent to this line. 

 The vortex tube is the subset of the flow domain bounded by the surface made of the 

vortex lines passing through all point of a given closed contour (the contour L on the 

picture below) 

vortex line

L

vorticity field



SSSTTTRRREEENNNGGGTTTHHH   OOOFFF   TTTHHHEEE   VVVOOORRRTTTEEEXXX   TTTUUUBBBEEE   
 

It is defined as the flux of vorticity through a cross-section of the 

tube. Using the Stokes’ Theorem we can write: 

 

S l

d d     ω n υ x  

 

We see that the strength of the vortex tube is equal to the 

circulation of the velocity along a closed contour wrapped 

around the tube. 

 

The above definition does not depend on the choice of a 

particular contour. Indeed, since the vorticity field is divergence-free, the flux of the 

vorticity is fixed along the vortex tube.  To see this, consider the tube segment   located 

between two cross-section S1 and S2 .  

 

From the GGO theorem we have 
 

1 2 sideS S S

0

0 d ds ds ds 0




           ω x ω n ω n ω n  

S2

S1

n2

n1

Sside



 

Note that the last integral vanishes because the surface Sside is made of the vortex lines and 

thus at each point of Sside the normal versor n is perpendicular to the vorticity vector.  

 

Note also that the orientations of the normal versors at S1 and S2 are opposite (in order to 

apply the GGO Theorem, the normal versor must point outwards at all components of the 

boundary  ).  

 

Reversing the orientation of n at S2, we conclude that 

 

1 2S S

ds ds   ω n ω n  

 

 

 

 

 

 

 

 

 



 

HHHEEELLLMMMHHHOOOLLLTTTZZZ   (((333
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   )))   TTTHHHEEEOOORRREEEMMM   
 

Assume that: 

 the flow is inviscid and barotropic, 

 the volume force field is potential.  

 

Then: the vortex lines consist of the same fluid elements, i.e. the lines of the vorticity field 

are material lines. 

 

Proof:  
 

We need the transformation rule for the vectors tangent to a material line. 

 

Let at initial time t = 0 the material line be described parametrically as : ( )0l sa a .  

At some later time instant t > 0, the shape of the material line follows from the flow mapping 

:t a xF 3 3R R , i.e.,  : ( ) [ ( )]tl s x x s aF .  

 

The corresponding transformation of the tangent vector can be evaluated as follows 

 

[ ]( ) ( ) ( ( )) [ ]( ( )) ( ) ( ( )) ( )

Jac

d d d
t 0

obi matri

ds ds ds

x

s s s s s s s 

 
   x x

ξ ξ
τ x a a a a τF  



 

 

Let’s now write the acceleration in the Lamb-Gromeko form:     

 

( )2D 1
tDt 2    a υ υ ω υ 

 

The rotation of a can be expressed as  

 

( ) ( ) ( ) ( )D
t Dt         a υ ω υ ω ω υ υ ω 

 

In the above, the following vector identity, written for p ω  and q υ,  is used  

 

( ) ( ) ( ) ( ) ( )         p q q p p q q p p q  

  

Next, one can calculate the Lagrangian derivative of the vector field  / ω   as follows 

 

  ( ) ( )

( )

2
D 1 1 D 1 D 1
Dt Dt Dt

1 1 1

  

  





 

 
         

     

υ

υ υ

ω ω ω a ω υ υ ω

ω a ω

 

 



From the equation of motion and assumed flow properties that the acceleration field is 

potential and thus 

 a 0  
 

Then, the equation for the vector field  / ω  reduces to 
 

  ( )D 1 1
Dt    υω ω  

 

Define the vector field c such that    i

j

x
i jc  

   ,  or equivalently,   [ ]

Jacobi
matrix

 


 x

ξ
ω c . 

 

In the above, the symbol ξ  denotes the Lagrange variables.  
 

The left-hand side of the above equation can be transformed as follows  
 

  [ ] [ ] [ ] [ ] [ ][ ]d d dD 1
Dt dt dt dt

L c c
     

    
 
 

     x x υ x υ x
xξ ξ ξ ξ ξ

ω c c c  

 

The right-hand side can be written as 

 

( ) [ ] [ ][ ]1R 
  

 
 
 

     x υ x
xξ ξ

ω υ c υ c  

 



Since L = R, we conclude that 
d
dt

0c  

 

Thus,  c is constant along trajectories of the fluid elements.  
 

Using the Lagrange description, we can write             ( , ) ( , ) 0t 0 c ξ c ξ c  

 

Note that for the initial time t = 0 the transformation between Lagrange and Euler 

descriptions reduces to identity.  

[ ]
t 0




x
ξ

Ι  

 

Therefore    
0

1
0 0c ω   and since  ( ) 0t c c    we get    

 

[ ]
0

1 1
0 




 x
ξ

ω ω . 

 

The last equality has the form of the transformation rule for the vectors tangent to 

material lines. Since the vector /0 0ω  is tangent to the vortex line passing through the 

point ξ at t = 0, it follows that the vector / ω  is tangent to image of this line at some later 

time t. But / ω  is also tangent to the vortex line passing through the point x, which means 

that the vortex lines must be material. 

  



Since the vortex lines are material, so are the vortex tubes. If we define a closed, material 

contour lying on the vortex tube’s surface (and wrapped around it), then such a contour 

remains on this surface for any time. It follows from the Kelvin Theorem that the circulation 

along such contour remains constant. Consequently, the strength of any vortex tube also 

remains constant in time. It is important conclusion showing that the vortex motion of the 

inviscid, barotropic fluid exposed to a potential force field cannot be created or destroyed.  

 



EEEQQQUUUAAATTTIIIOOONNN   OOOFFF   TTTHHHEEE   VVVOOORRRTTTIIICCCIIITTTYYY   TTTRRRAAANNNSSSPPPOOORRRTTT   
 

In fluid mechanics the vorticity plays a very important role, in particular in understanding of 

the phenomenon of turbulence. In this section we derive the differential equation governing 

spatial/temporal evolution of this field. 
 

Recall that the equation of motion of an inviscid fluid can be written in the following form 

 

( )21 1
t 2 p       υ ω υ f  

 

Thus, the application of the rotation operator yields 

 

( ) ( )1
t p      ω ω υ f  

 

The pressure term can be transformed as follows 

 

( ) ( ) 2
1 1 1 1

0

p p p p   




           

 

Note: the above term vanishes identically when the fluid is barotropic since the gradients of 

pressure and density are in such case parallel.  



 

The equation of the vorticity transport can be written in the form  

 

( ) ( ) 2
1

t p


         ω υ ω ω υ f  

 

or, using the full derivative         ( ) 2

vortex stretching nonpotential
baroclinicterm volume forceterm

D 1

term

Dt p


      ω ω υ f  

 

 The change of the vorticity appears due to the following factors: 

 

 Local deformation of the pattern of vortex lines (or vortex tubes) known as the “vortex 

stretching” effect. This mechanism is believed to be crucial for generating spatial/temporal 

complexity of turbulent flows. The vortex stretching term vanishes identically for 2D 

flows. 
 

 Presence of baroclinic effects. If the flow is not barotropic then the gradients of pressure 

and density field are nonparallel. It can be shown that in such situation a torque is 

developed which perpetuates rotation of fluid elements (generates vorticity). 
 

 Presence of nonpotential volume forces. This factor is important e.g. for electricity-

conducting fluids. 



For the barotropic (in particular – incompressible) motion of inviscid fluid, the vorticity 

equation reduces to 
 

( )D
Dt

  υω ω  

 

In the 2D case it reduces further to                  D
Dt

0ω  

 

We conclude that in any 2D flow the vorticity is conserved along trajectories of fluid 

elements. 
 

If the fluid is viscous, the vorticity equation contains the diffusion term. We will derive this 

equation assuming that the fluid is incompressible. Again, we begin with the Navier-Stokes 

equation in the Lamb-Gromeko form 
 

( )21 1
t 2 p          υ ω υ υ f  

 

If the rotation operator is applied, we get the equation 
 

( ) ( )t        ω υ ω ω υ ω f  
 

which reduces to                   ( ) ( )t       ω υ ω ω υ ω  

 

when the field of the volume forces f  is potential.   



 

In the above, the following operator identity has been used  
 

( )rot rot grad div rot rot rot rot grad div rot rot      v v v ω ω ω ω 
 

showing that the vector Laplace and rotation operators commute.  

 

The vorticity equation can be also written equivalently as  

 

( )D
Dt    υω ω ω 

 

The viscous term describes the diffusion of vorticity due to fluid viscosity. This effect 

smears the vorticity over the whole flow domain. Thus, in the viscous case the vortex lines are 

not material lines anymore. 
 

There exists a relation between the streamfunction and vorticity. Since the flow is 2D, the 

vorticity field is perpendicular to the flow’s plane and can be expressed as  

 

             ( )2 11 2 3 3      ω υ e e  
 

Then, the streamfunction satisfies the Poisson equation  
 

( )1 2 111 22 2              

 



Two dimensional motion of an incompressible viscous fluid can be described in terms of the 

purely kinematical quantities: velocity, vorticity and streamfunction. The pressure field is 

eliminated and the continuity equation div 0υ  is automatically satisfied. The complete 

description consists of the following equations: 
 

 Equation of the vorticity transport  (2D)                    1 2t 1 2             

 Equation for the streamfunction         

 Relation between the streamfunction and velocity  1 2     , 2 1    

 Definition of vorticity (2D)      2 11 2          
 

accompanied by appropriately formulated boundary and initial conditions. 

 

 

 

 

 

 

 

 

 

 

 


