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PROOF OF THE LAMB-GROMEKO FORMULA
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Thus
(v-V)o=V(}0*)+wxv

and the Lamb-Gromeko formula follows immediately. o




REYNOLDS TRANSPORT THEOREM (1)

We will prove the mathematical result known as the A
Reynolds’ Transport Theorem, which plays the
fundamental role in derivation of differential forms
of the conservation principles in Continuum
Mechanics.

Consider any sufficiently regular scalar field
f = f(t,X). Consider the integral of f calculated

over an arbitrary material volume Q(%).

C(t)= j f(t,x)dx.

Xa:G)

Q(t)

We need to compute the time derivative C'(t) = a I f(t,x)dx.

dt

Q(t)

NOTE: This task is nontrivial since the integration domain is itself time dependent!




REYNOLDS TRANSPORT THEOREM (2)

To calculate the derivative, we will switch from Euler variables X =[X;,X,,X;] to
Lagrangian variables & =[¢&,,&,,&;]. The integral C(t) can be written as

Ct)= [ ft.x)dx= [ it xEICE= [ f(t,&)I(t,€)de
Q(t) [P ()

In the above formula we have used the composite function f

fo = To(t,6) = T[t, x(t, &),

and also the Jacobi determinant (Jacobian) defined as
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J(t,&) =det 7 e o (t,&).
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REYNOLDS TRANSPORT THEOREM (3)

Since the domain (g is time-independent (it is actually the initial form of the material volume

Q(t) at the time t = 0), we can move the differentiation operator under the sign of the
Integral and get

=3 [ e8Iaede= [ Toa)I s+ [ 1 O (t.¢)de
%

-Qo
Note that time differentiation of the composite function fg yields

GO = ftxt.Ol=§ It xt O+ 4 FILxt O] x(tE) =

=V (t &)=uilt, x(t 9]

=(& f+o V[t x(t,&)]

This part was easy! We need to calculate the time derivative of the Jacobian which has
appeared in the second integral in the formula for C'(t). This is much more complicated ...

Basically, we have two methods.




Method A

We write the Jacobian using the alternating symbol  J (t,&) =€, ggl Sg 22

Note that partial derivatives with respect to time and Lagrangian variables commute, hence
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The time derivative

OV, OXy O0X3 0Xy OV, 0X3

ot =S a3, 5, + Sik 78 %2 7,

jk 0¢i 0¢j Og
N, oV oV 0%y 0% 0% O0X;  OX  0X
0cp  0Osp  Ogz| |05 05 Ogz| |05y Oy 0g3
0Xy  OXy  OXy N, N, oV, OXy  OXy  OXy
0y 05 0g| |0 05 0Og| |05 05 05
OX3  OX3  OXg OX3  OX3  OXg Ng Ny OVy
0c  Ocp  Ocz| [0q 05 Og| |0 05 05

+ €

|
e
<<

cof JJ;

Egv)ij cofactor (i, j) of J




Consider two square matrices A and B, and also the product C = AB'. It means that

Clk = Zaijbkj = aljbkj’
J

so we conclude that
trC =¢; =a;b; (trace of the matrix C)

Moreover, from the construction of the inverse Jacobi matrix we have

J1= deJ(COfJ)T = (cof J)' =detJ I 1=3J"

Hence, the formula for the time derivative of the Jacobi determinant can be written as follows
2 J(t,&) =tr[v V- (cof J)T}(t,f) = (t,f)tr[v éV-J‘l}(t,é‘)

Finally, we need to get back to the Euler variables. To this end, we use the relation between
Lagrange and Euler definitions of the fluid velocity

V(t.¢) =t x(t,<)]

Lagrange Euler




Next, we calculate the gradient operator with respect to the Lagrange variables

V| (09 =Vi(t.¢)= Zaxv[tX(té)]axk(tf)

The above formula can be written shortly as
V.V (1.8)=Volt, x(t,&)] I (1.£)
Thus, the time derivative of the Jacobian can be re-written in the following form
2J(t,€) = I(4,E) (tr Vo)[t, x(t, )]
Taking into account that trVo=4-u =divo=V-o

we finally get the formula

2J(t,&) =J(t,&) V-olt, x(t,&)]




Method B

This method is based upon the group property of the transformation of the material volume
at initial time t = 0 to the volume (consisting of the same fluid particles) at some later time

t>0.Wecanwrite X(t+5,&)=x[t,x(s,&)] or (1=1,2,3).

X(1+5,8,6,,83 ) =X [1,%(8,61,85,83) 1 %:(5,61,6,:83), %5(8: 61,6, 63)]

Let’s differentiate the above formula with respect to the Lagrange coordinate ¢;:

OX; _ OX OX

a_é:j (t + S, 5) — a_é;k[t’ X(S, 5)] a_fl;(& 5)’
which can also be writtenas  [J J;; (t +5,&) =[J]; [t, x(s,&)] [J]kj (s,&),
which is equivalent to J({t+s,&)=J[t,x(s,&)] J(5,E).

From the fundamental property of determinant

J(t+5s,8)=J[t,x(s,&)] I(s,<).




We need to calculate the derivative

_\](té-')_| J(t+At§) J(t,€) _ i I(6E) I[AL x(t, )]~ I(t,€) _

At—0 At —>O At

= J(t,&) lim J[4t, X(t ‘f)]

At—0

Note that J[At, X(t,&)] is the Jacobian of the “nearly identical” transformation
X(t,&) > x(t+ At, &), which can be written shortly as X > % . (X).

The explicit form of this transformation is (I = 1, 2, 3),
[ . ()] = % + 0, (L, X}, X, X5 ) At +O(A?)
This, the Jacobi matrix can be calculated as follows

[93, (4, 3) = [, ()], =4, +aT(t X) At +O(At2)
J

or simply J(4t,X)=1+Vo(t,x) At +O(At?).




Now, it is not difficult to show (do it!) that

(At x) =1+ [501 + % av?’j(t X) At +O(A2) =14V o (t, x) At + O(At2)

OX, OX, OX
divo
. J(4t,x)-1
Thus, we get J\!Lnx) " =V-o(t, x)

and — after returning back to the Lagrange variables - the formula for the time derivative of
the Jacobian is obtained

%J (t,8)=J(t,&)(V o)t x(t,&)].




REYNOLDS TRANSPORT THEOREM (4)

The time derivative C'(t) can be now evaluated as follows

C't)= [ (& F+o-VI+fV-olit,x(t,)]I(t¢)dé -

a(t)

aQ(t)

.(%f+v-

| G fdx+ |

Vf+fV-v)(t,x)dx: | [%erV-(fv)](t,x)dx:

Q(t)

V-(fo)dx = j%fdﬁj f v, ds
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Theorem normal
velocity

Note that the last equality has been obtained by the use of the Green-Gauss-Ostrogradsky
(GGO) Theorem. We see that the rate of change of C(t) is the sum of two components. The
first component appears due to the local time variation of the integrated function f and it
appears even if the fluid is in rest (no motion). In contrast, the second term is entirely due to
the fluid motion and it assumes nonzero value even if the field f is stationary (i.e. % f =0).




TIME RATE OF CHANGE OF AN EXTENSIVE QUANTITY

Consider an extensive physical quantity, characterized by its mass-specific density
H =H(t, X). The amount of this quantity contained in the material volume Q) is
expressed by the following volume integral

h(t) = j oHdx
Q1)

The examples are: the Cartesian components of the linear momentum, kinetic and internal
energy. We need to know how to evaluate the time derivative of such integrals.

Using the Reynolds’ theorem and the differential equation of mass conservation we can
write

Gh=%& [ pHdx = [ [G(pH)+V-(pHD)ldx=

Q(t) Reynolds <2(t)
Trans.Th.
= j H[%p+v-(pv)}dx+ j p(%H +v-VH)dx= J pHdx
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