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PPRROOOOFF  OOFF  TTHHEE  LLAAMMBB--GGRROOMMEEKKOO  FFOORRMMUULLAA  
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Thus   
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and the Lamb-Gromeko formula follows immediately.   ♣ 

 

 



 

RREEYYNNOOLLDDSS  TTRRAANNSSPPOORRTT  TTHHEEOORREEMM  ((11))  
 

We will prove the mathematical result known as the 

Reynolds’ Transport Theorem, which plays the 

fundamental role in derivation of differential forms 

of the conservation principles in Continuum 

Mechanics. 

 

Consider any sufficiently regular scalar field 

( , )f f t x . Consider the integral of f calculated 

over an arbitrary material volume Ω(t). 
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We need to compute the time derivative    
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NOTE: This task is nontrivial since the integration domain is itself time dependent!  
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RREEYYNNOOLLDDSS  TTRRAANNSSPPOORRTT  TTHHEEOORREEMM  ((22))  
  

To calculate the derivative, we will switch from Euler variables [ , , ]1 2 3x x xx  to 

Lagrangian variables [ , , ]1 2 3  ξ = . The integral C(t) can be written as 
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0 0

0

t

C t f t d f t t J t d f t J t d
  

    x x x ξ ξ ξ ξ ξ ξ . 

 

In the above formula we have used the composite function  f0  
 

( , ) [ , ( , )]0 0f f t f t t ξ x ξ , 

 

and also the Jacobi determinant (Jacobian) defined as  
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RREEYYNNOOLLDDSS  TTRRAANNSSPPOORRTT  TTHHEEOORREEMM  ((33)) 

 

Since the domain Ω0 is time-independent (it is actually the initial form of the material volume 

Ω(t) at the time t = 0), we can move the differentiation operator under the sign of the 

integral and get  

 

( ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

0 0 0

0
0 0

fd J
C t f t J t d t J t d f t t d

dt t t
  

 
   

   ξ ξ ξ ξ ξ ξ ξ ξ ξ  

 

Note that time differentiation of the composite function f0 yields 

 

 
( , ) [ , ( , )]

( , ) [ , ( , )] [ , ( , )] [ , ( , )] ( , )

[ , ( , )]

i

i i

d
i0t t x tdt

V t t t

t

f t f t t f t t f t t x t

f f t t



   
   

 




    

  

ξ x ξ

ξ x ξ x ξ x ξ ξ

υ x ξ

 

 

This part was easy! We need to calculate the time derivative of the Jacobian which has 

appeared in the second integral in the formula for ( )C t . This is much more complicated … .  

 

Basically, we have two methods. 



Method A 
 

We write the Jacobian using the alternating symbol        ( , ) 31 2
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The time derivative 
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Consider two square matrices A and B, and also the product C = AB
T
. It means that 

 

ij ijik kj kj
j

c a b a b  , 

so we conclude that   
 

ii ij ijtr c a b C    (trace of the matrix C) 
 

Moreover, from the construction of the inverse Jacobi matrix we have 
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Hence, the formula for the time derivative of the Jacobi determinant can be written as follows 
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Finally, we need to get back to the Euler variables. To this end, we use the relation between 

Lagrange and Euler definitions of the fluid velocity 
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Next, we calculate the gradient operator with respect to the Lagrange variables 
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The above formula can be written shortly as 
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Thus,  the time derivative of the Jacobian can be re-written in the following form   
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we finally get the formula 
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Method B  

 

This method is based upon the group property of the transformation of the material volume 

at initial time t = 0 to the volume (consisting of the same fluid particles) at some later time 

t > 0. We can write  ( , ) [ ( , )]t s t s x ξ x ,x ξ   or  (i = 1,2,3). 
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Let’s differentiate the above formula with respect to the Lagrange coordinate ξj: 
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which can also be written as      [ ] ( , ) [ ] [ , ( , )] [ ] ( , )ij ik kjt s t s s J ξ J x ξ J ξ , 
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We need to calculate the derivative 
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Note that [ , ( , )]J t t x ξ  is the Jacobian of the “nearly identical” transformation 

( , ) ( , )t t tx ξ x ξ , which can be written shortly as ( )tx x .  
 

The explicit form of this transformation is (i = 1, 2, 3), 
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This,  the Jacobi matrix can be calculated as follows 
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or simply                        ( , ) ( , ) ( )2t t t O t    J x I υ x .  



 

Now, it is not difficult to show (do it!) that 
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and – after returning back to the Lagrange variables - the formula for the time derivative of 

the Jacobian is obtained  
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RREEYYNNOOLLDDSS  TTRRAANNSSPPOORRTT  TTHHEEOORREEMM  ((44))  
 

The time derivative  ( )C t  can be now evaluated as follows 
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Note that the last equality has been obtained by the use of the Green-Gauss-Ostrogradsky 

(GGO) Theorem. We see that the rate of change of C(t) is the sum of two components. The 

first component appears due to the local time variation of the integrated function f and it 

appears even if the fluid is in rest (no motion). In contrast, the second term is entirely due to 

the fluid motion and it assumes nonzero value even if the field f is stationary (i.e. t f 0
  ). 

 

 

 



TTIIMMEE  RRAATTEE  OOFF  CCHHAANNGGEE  OOFF  AANN  EEXXTTEENNSSIIVVEE  QQUUAANNTTIITTYY  
 

Consider an extensive physical quantity, characterized by its mass-specific density 

( , )H H t x . The amount of this quantity contained in the material volume Ω(t) is 

expressed by the following volume integral 
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The examples are: the Cartesian components of the linear momentum, kinetic and internal 

energy. We need to know how to evaluate the time derivative of such integrals.  

 

Using the Reynolds’ theorem and the differential equation of mass conservation we can 

write 
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