MATHEMATICAL PRELIMINARIES

Algebra of VECTORS AND TENSORS

Orthogonal basic unary vectors (versors) : $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$

$$
\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)=\delta_{i j} \equiv \begin{cases}1 & \text { if } \quad i=j \\ 0 & \text { if } \quad i \neq j\end{cases}
$$

Any vector in $\mathbf{E}^{\mathbf{3}}$ is expressed as unique linear combinations of the basic versors

$$
\begin{gathered}
\boldsymbol{a}=a_{1} \boldsymbol{e}_{1}+a_{2} \boldsymbol{e}_{2}+a_{3} \boldsymbol{e}_{3} \equiv a_{i} \boldsymbol{e}_{i}-\text { summation (Einstein) convention } \\
\boldsymbol{a}=\left[a_{1}, a_{2}, a_{3}\right]-\text { canonical equivalence of } \mathrm{E}^{3} \text { and } \mathrm{R}^{3}
\end{gathered}
$$

INNER (SCALAR) PRODUCT

Let $\boldsymbol{a}=a_{i} \boldsymbol{e}_{i}$ and $\boldsymbol{b}=b_{j} \boldsymbol{e}_{j}$. We define the inner product of \boldsymbol{a} and \boldsymbol{b} :

$$
\boldsymbol{a} \cdot \boldsymbol{b} \equiv(\boldsymbol{a}, \boldsymbol{b})=a_{i} b_{j}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)=a_{i} b_{j} \delta_{i j}=a_{i} b_{i}
$$

Note that $\left(\boldsymbol{a}, \boldsymbol{e}_{i}\right)=a_{i}$ hence we can write $\boldsymbol{a}=\left(\boldsymbol{a}, \boldsymbol{e}_{i}\right) \boldsymbol{e}_{i}$

VECTOR (CROSS) PRODUCT

We define the operation \times on the basic vectors:

$$
\begin{gathered}
\boldsymbol{e}_{1} \times \boldsymbol{e}_{2}=\boldsymbol{e}_{3}, \boldsymbol{e}_{2} \times \boldsymbol{e}_{3}=\boldsymbol{e}_{1}, \boldsymbol{e}_{3} \times \boldsymbol{e}_{1}=\boldsymbol{e}_{2} \\
\underbrace{\boldsymbol{e}_{i} \times \boldsymbol{e}_{i}}_{\text {no summation }}=\boldsymbol{0}, \boldsymbol{e}_{i} \times \boldsymbol{e}_{j}=-\boldsymbol{e}_{j} \times \boldsymbol{e}_{i}
\end{gathered}
$$

Assuming linearity with respect to both arguments, we extend this operation to all vectors in the space E^{3}

$$
\boldsymbol{a} \times \boldsymbol{b}=a_{i} \boldsymbol{e}_{i} \times b_{j} \boldsymbol{e}_{j}=a_{i} b_{j} \boldsymbol{e}_{i} \times \boldsymbol{e}_{j}=\left(a_{2} b_{3}-a_{3} b_{2}\right) \boldsymbol{e}_{1}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \boldsymbol{e}_{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \boldsymbol{e}_{3}
$$

Practical way of computing the vector product

$$
\boldsymbol{a} \times \boldsymbol{b}=\left|\begin{array}{ccc}
\boldsymbol{e}_{1} & \boldsymbol{e}_{2} & \boldsymbol{e}_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{cc}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \boldsymbol{e}_{1}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \boldsymbol{e}_{2}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \boldsymbol{e}_{3}
$$

ALTERNATING SYMBOL

$$
\in_{i j k}=\left\{\begin{array}{c}
0 \text { if } i=j \text { or } i=k \text { or } j=k \\
1 \text { if }\{i, j, k\} \text { is an even permutation of }\{1,2,3\} \\
-1 \text { if }\{i, j, k\} \text { is an odd permutation of }\{1,2,3\}
\end{array}\right.
$$

For instance we have

$$
\in_{213}=-1, \quad \in_{311}=0, \quad \in_{231}=1
$$

The vector product of \mathbf{a} and \mathbf{b} can be nicely written as follows

$$
\boldsymbol{a} \times \boldsymbol{b}=\in_{i j k} a_{j} b_{k} \boldsymbol{e}_{i}
$$

Another useful operation is the mixed product of three vectors

$$
\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=\in_{i j k} a_{i} b_{j} c_{k}
$$

Determinant of the matrix $\mathbf{A}(\operatorname{dim} \mathbf{A}=3): \quad \operatorname{det} \boldsymbol{A}=\in_{i j k} a_{1, i} a_{2, j} a_{3, k}$

$\underline{2^{\text {ND }} \text {-RANK TENSORS IN } \boldsymbol{E}^{\mathbf{3}}}$

Tensors as bilinear transformations (functionals) $E^{3} \times E^{3} \rightarrow R$

Bi-linearity means that

$$
\begin{aligned}
& T\left(\alpha_{1} \boldsymbol{x}_{1}+\alpha_{2} \boldsymbol{x}_{2}, \boldsymbol{y}\right)=\alpha_{1} T\left(\boldsymbol{x}_{1}, \boldsymbol{y}\right)+\alpha_{2} T\left(\boldsymbol{x}_{2}, \boldsymbol{y}\right) \\
& T\left(\boldsymbol{x}, \alpha_{1} \boldsymbol{y}_{1}+\alpha_{2} \boldsymbol{y}_{2}\right)=\alpha_{1} T\left(\boldsymbol{x}, \boldsymbol{y}_{1}\right)+\alpha_{2} T\left(\boldsymbol{x}, \boldsymbol{y}_{2}\right)
\end{aligned}
$$

For two arbitrary vectors \mathbf{x} and \mathbf{y} we can write

$$
T(\boldsymbol{x}, \boldsymbol{y})=T\left(x_{i} \boldsymbol{e}_{i}, y_{j} \boldsymbol{e}_{j}\right)=x_{i} y_{j} T\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)=t_{i j} x_{i} y_{j}
$$

The matrix \boldsymbol{T} such that $[\boldsymbol{T}]_{i j}=t_{i j}$ represents the tensor \mathbf{T} in the assumed reference frame (or with respect to assumed basic versors)

Some operations on tensors:
Addition: $\quad T=T_{1}+T_{2} \Rightarrow \boldsymbol{T}=\boldsymbol{T}_{1}+\boldsymbol{T}_{2} \Rightarrow t_{i j}=t_{i j}^{l}+t_{i j}^{2}$
Multiplication by a scalar $T=\beta T_{1} \Rightarrow \boldsymbol{T}=\beta \boldsymbol{T}_{1} \Rightarrow t_{i j}=\beta t_{i j}^{l}$
Multiplication of two tensors $T=T_{1} \boldsymbol{T}_{2} \Rightarrow \boldsymbol{T}=\boldsymbol{T}_{1} \boldsymbol{T}_{2} \Rightarrow t_{i j}=t_{i k}^{1} t_{k j}^{2}$
Scalar (Frobenius) product of two tensors $\quad s=T_{1}: T_{2}:=t_{i j}^{1} t_{i j}^{2} \quad$ (double summation!)

Basic linear functionals $E^{3} \rightarrow R$:

$$
f_{i}\left(\boldsymbol{e}_{j}\right):=\delta_{i j}
$$

In the case of the orthogonal base, the basic functionals (covectors) can be identified with the "normal" base. The "canonical" identity between base and co-base follows from the following formula

$$
f_{i}(\boldsymbol{w})=\left(\boldsymbol{e}_{i}, \boldsymbol{w}\right), i=1,2,3, \boldsymbol{w} \in E^{3}
$$

Tensor product of the basic functionals:

$$
\begin{aligned}
& \left(f_{i} \otimes f_{j}\right)(\boldsymbol{x}, \boldsymbol{y}):=f_{i}(\boldsymbol{x}) f_{j}(\boldsymbol{y})=f_{i}\left(x_{k} \boldsymbol{e}_{k}\right) f_{j}\left(y_{m} \boldsymbol{e}_{m}\right)= \\
& =x_{k} y_{m} f_{i}\left(\boldsymbol{e}_{k}\right) f_{j}\left(\boldsymbol{e}_{m}\right)=x_{k} y_{m}\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{k}\right)\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{m}\right)=x_{k} y_{m} \delta_{i k} \delta_{j m}=x_{i} y_{j}
\end{aligned}
$$

Thus we can write $T(\boldsymbol{x}, \boldsymbol{y})=t_{i j} x_{i} y_{j}=t_{i j}\left(f_{i} \otimes f_{j}\right)(\boldsymbol{x}, \boldsymbol{y})$ or $T=t_{i j} f_{i} \otimes f_{j}$.
Due to the above identification between base and co-base we may equally well write

$$
T=t_{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}
$$

The linear space of the $\mathbf{2}^{\text {nd }}$-rank tensors is 9 -dimensional.

ORTHOGONAL TRANSFORMATIONS OF COORDINATE SYSTEMS

Assume that different basic vectors are introduced $\boldsymbol{e}_{1}^{\prime}, \boldsymbol{e}_{2}^{\prime}, \boldsymbol{e}_{3}^{\prime}$ (see figure). These vectors can be expressed by means of the "old" basic vectors.

Consider $\quad \boldsymbol{e}_{i}^{\prime}=z_{i k} \boldsymbol{e}_{k} \quad, \quad \boldsymbol{e}_{j}^{\prime}=z_{j m} \boldsymbol{e}_{m}$.
The orthogonality condition for the new base yields
$(\boldsymbol{I})_{i j}=\delta_{i j}=\left(\boldsymbol{e}_{i}^{\prime}, \boldsymbol{e}_{j}^{\prime}\right)=z_{i k} z_{j m}\left(\boldsymbol{e}_{k}, \boldsymbol{e}_{m}\right)=z_{i k} z_{j m} \delta_{k m}=$
$=z_{i k} z_{j k}=\left(\boldsymbol{Z} \boldsymbol{Z}^{T}\right)_{i j}=\left(\boldsymbol{Z}^{T} \boldsymbol{Z}\right)_{i j}$

We conclude that the transformation of the basis preserves orthonormality of the basic vectors if and only if the transformation matrix \mathbf{Z} satisfies the relation $\mathbf{Z}^{-1}=\boldsymbol{Z}^{T}$, i.e., it is the orthogonal matrix.

Each vector \mathbf{x} from E^{3} can be expressed with respect to both basis, namely

$$
\boldsymbol{x}=x_{i} \boldsymbol{e}_{i}=x_{i}^{\prime} \boldsymbol{e}_{i}^{\prime}
$$

Thus

$$
\boldsymbol{x}=x_{i} \boldsymbol{e}_{i}=x_{i}^{\prime} z_{i j} \boldsymbol{e}_{j}=x_{j}^{\prime} z_{j i} \boldsymbol{e}_{i}
$$

meaning that

$$
x_{i}=z_{j i} x_{j}^{\prime}=\left(\mathbf{Z}^{T}\right)_{i j} x_{j}^{\prime}=\left(\mathbf{Z}^{-l}\right)_{i j} x_{j}^{\prime}
$$

and

$$
x_{i}^{\prime}=(\boldsymbol{Z})_{i j} x_{j}
$$

These are the transformation rules for the vectors!

Consider the tensor T and its representation with respect to both basis (reference frames)

$$
T(\boldsymbol{x}, \boldsymbol{y})=t_{i j} x_{i} y_{j}=t_{i j}^{\prime} x_{i}^{\prime} y_{j}^{\prime}
$$

We can write

$$
\begin{aligned}
& T(\boldsymbol{x}, \boldsymbol{y})=t_{i j} x_{i} y_{j}=t_{i j} z_{k i} x_{k}^{\prime} z_{m j} y_{m}^{\prime}=x_{k}^{\prime} z_{k i} t_{i j} z_{m j} y_{m}^{\prime}= \\
& =x_{k}^{\prime} \underbrace{\left.(\boldsymbol{Z} \boldsymbol{T})_{k j}\left(\boldsymbol{Z}^{T}\right)_{k m}\right)_{j m}}_{(\boldsymbol{Z T})_{k j}} y_{m}^{\prime}=x_{k}^{\prime} \underbrace{\left(\boldsymbol{Z T} \boldsymbol{T} \boldsymbol{Z}^{T}\right)_{k m}}_{t_{k m}} y_{m}^{\prime}=x_{k}^{\prime} t_{k m}^{\prime} y_{m}^{\prime}
\end{aligned}
$$

The matrix representing the tensor T in the new base is given as

$$
\boldsymbol{T}^{\prime}=\boldsymbol{Z} \boldsymbol{T} \boldsymbol{Z}^{T}=\boldsymbol{Z} \boldsymbol{T} \boldsymbol{Z}^{-1}
$$

Thus, we have obtained the transformation rule for the $2^{\text {nd }}-$ rank tensors!

DIFFERENT VIEW: $2^{\text {ND }}$-RANK TENSORS AS LINEAR MAPPINGS $E^{3} \rightarrow E^{3}$

Consider the $2^{\text {nd }}$-rank tensor T and two vectors \mathbf{x} and \mathbf{y}.
We have

$$
T(\boldsymbol{x}, \boldsymbol{y})=x_{i} t_{i j} y_{j}=x_{i} w_{i}=\underset{\substack{\text { inner } \\ w_{i}}}{(\boldsymbol{x}, \boldsymbol{w}) .}
$$

The vector \mathbf{w} can be defined as $\boldsymbol{w}=\mathfrak{T} \boldsymbol{y}$.
The linear transformation $\mathfrak{T}: E^{3} \rightarrow E^{3}$ is defined by its action on the basic versors as

$$
\mathfrak{T} \boldsymbol{e}_{j}=t_{i j} \boldsymbol{e}_{i}
$$

Indeed, for any vector w we get

$$
\boldsymbol{w}=\mathfrak{T} \boldsymbol{y}=\mathfrak{T}\left(y_{j} \boldsymbol{e}_{j}\right)=y_{j} \mathfrak{T} \boldsymbol{e}_{j}=t_{i j} y_{j} \boldsymbol{e}_{i}=w_{i} \boldsymbol{e}_{i}
$$

Equivalence between 2-rank tensors and linear mappings can be established as follows

$$
\mathfrak{T} \rightarrow T: T(\boldsymbol{x}, \boldsymbol{y}):=(\boldsymbol{x}, \mathfrak{T} y) \quad, \quad T \rightarrow \mathfrak{T}: \quad \mathfrak{T} y:=T\left(\boldsymbol{e}_{i}, \boldsymbol{y}\right) \boldsymbol{e}_{i}
$$

EIGENVECTORS, EIGENVALUES AND TENSOR INVARIANTS

The eigenvalue problem:

$\mathbf{1}^{\text {st }}$ formulation: find $\lambda \in C$ and nonzero \mathbf{w} such that $\mathfrak{T} \boldsymbol{w}=\lambda \boldsymbol{w}$, or
$\mathbf{2}^{\text {nd }}$ formulation: find $\lambda \in C$ and nonzero \mathbf{w} such that $T(\boldsymbol{x}, \boldsymbol{v})=\lambda(\boldsymbol{x}, \boldsymbol{v})$ for each vector \mathbf{x} from the space E^{3}.

Equivalently, we have

$$
\left(t_{i j} v_{j}-\lambda v_{i}\right) \boldsymbol{e}_{i}=\boldsymbol{0} \Rightarrow p_{T}(\lambda)=\operatorname{det}(\boldsymbol{T}-\lambda \boldsymbol{I})=0
$$

Thus eigenvalues are the roots of the characteristic polynomial $p_{T}(\lambda)$.
Tensor T is symmetric when $T(\boldsymbol{x}, \boldsymbol{y})=T(\boldsymbol{y}, \boldsymbol{x})$, i.e. when $t_{i j}=t_{j i}$ (check!) or $\boldsymbol{T}=\boldsymbol{T}^{T}$.
If the tensor T is symmetric then its all eigenvalues are real and the eigenvectors corresponding to different eigenvalues are orthogonal (the proof can be found in standard algebra textbooks).

The characteristic polynomial is invariant, i.e. it is the same in all orthogonal reference frames. Indeed, according to the transformation rule we have

$$
\begin{aligned}
& p_{T}(\lambda)=\operatorname{det}\left(\boldsymbol{T}^{\prime}-\lambda \boldsymbol{I}\right)=\operatorname{det}\left(\boldsymbol{Z} \boldsymbol{T} \boldsymbol{Z}^{-1}-\lambda \boldsymbol{I}\right)=\operatorname{det}\left[\boldsymbol{Z}(\boldsymbol{T}-\lambda \boldsymbol{I}) \boldsymbol{Z}^{-1}\right]= \\
& =\operatorname{det} \boldsymbol{Z} \cdot \operatorname{det}(\boldsymbol{T}-\lambda \boldsymbol{I}) \cdot \operatorname{det} \boldsymbol{Z}^{-1}=\operatorname{det} \boldsymbol{Z} \cdot \operatorname{det}(\boldsymbol{T}-\lambda \boldsymbol{I}) \cdot(\operatorname{det} \boldsymbol{Z})^{-1}=\operatorname{det}(\boldsymbol{T}-\lambda \boldsymbol{I})
\end{aligned}
$$

We are mostly interested in 3D case. Then, we can write

$$
p_{T}(\lambda)=-\lambda^{3}+J_{1} \lambda^{2}-J_{2} \lambda+J_{3}
$$

where

$$
\begin{array}{ll}
J_{1}=\operatorname{tr} T:=t_{i i} \equiv t_{11}+t_{22}+t_{33} & (\text { "tr" means trace }), \\
J_{2}=\frac{1}{2}\left[(\operatorname{tr} T)^{2}-\operatorname{tr} T^{2}\right] & (\text { calculate for 2D case!) }, \\
J_{3}=\operatorname{det} T . &
\end{array}
$$

The following relations hold between invariants and the eigenvalues (Viete formulas for $3^{\text {rd }}$-order polynomial)

$$
J_{1}=\lambda_{1}+\lambda_{2}+\lambda_{3} \quad, \quad J_{2}=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3} \quad, \quad J_{3}=\lambda_{1} \lambda_{2} \lambda_{3}
$$

Cayley-Hamilton Theorem

Any square matrix \mathbf{A} satisfies its own characteristic polynomial $p_{A}(\lambda)=\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})$, i.e. we have $p_{A}(\boldsymbol{A})=\mathbf{0}$.

Proof:

For invertible square matrix \boldsymbol{M} we have $\boldsymbol{M}^{-1}=(\operatorname{det} \boldsymbol{M})^{-1}(\operatorname{cof} \boldsymbol{M})^{T}$. Thus $\boldsymbol{M}(\operatorname{cof} \boldsymbol{M})^{T}=\operatorname{det} \boldsymbol{M} \cdot \boldsymbol{I}$. Let $\boldsymbol{M}=\boldsymbol{A}-\lambda \boldsymbol{I}$. Then $\boldsymbol{B}(\lambda):=[\operatorname{cof}(\boldsymbol{A}-\lambda \boldsymbol{I})]^{T}$ is the matrix polynomial of the order not larger than $\mathrm{n}-1(\mathrm{n}-$ dimension of $\mathbf{A})$

$$
\boldsymbol{B}(\lambda)=\lambda^{n-1} \boldsymbol{B}_{n-1}+\lambda^{n-1} \boldsymbol{B}_{n-1}+\ldots+\lambda \boldsymbol{B}_{1}+\boldsymbol{B}_{0}
$$

and we have

$$
\begin{aligned}
& (\boldsymbol{A}-\lambda \boldsymbol{I})\left(\lambda^{n-1} \boldsymbol{B}_{n-1}+\lambda^{n-1} \boldsymbol{B}_{n-1}+\ldots+\lambda \boldsymbol{B}_{1}+\boldsymbol{B}_{0}\right)= \\
& =\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I}) \cdot \boldsymbol{I}=\left(\lambda^{n}+c_{n-1} \lambda^{n-1}+\ldots+c_{1} \lambda+c_{0}\right) \boldsymbol{I}
\end{aligned}
$$

The above equality is satisfied for any number λ so the corresponding matrix coefficients at both sides should be the same.

Thus

$$
\begin{aligned}
& -\boldsymbol{B}_{n-1}=\boldsymbol{I} \\
& -\boldsymbol{B}_{k-1}+\boldsymbol{A} \boldsymbol{B}_{k}=c_{k} \boldsymbol{I}, k=n-1, n-2, . ., 1 \\
& \boldsymbol{A} \boldsymbol{B}_{0}=c_{0} \boldsymbol{I}
\end{aligned}
$$

Let's multiply (from the left side) the first equation by \boldsymbol{A}^{n}, the second one by \boldsymbol{A}^{n-1} and so on (then the last equation remains unchanged) and sum up all equations. The left-hand side of the obtained equation is zero since all terms will cancel out in pairs! Thus we get

$$
0=\boldsymbol{A}^{n}+c_{n-1} \boldsymbol{A}^{n-1}+\ldots+c_{1} \boldsymbol{A}+c_{0} \boldsymbol{I} \equiv p_{A}(\boldsymbol{A})
$$

as stated.
For the matrices with the dimension equal 3 we have

$$
-\boldsymbol{T}^{3}+J_{1} \boldsymbol{T}^{2}-J_{2} \boldsymbol{T}+J_{3} \boldsymbol{I}=\mathbf{0}
$$

This relation will be used in the section devoted to the constitutive relations in fluid mechanics. In particular, note that the third power of such matrix can be expressed as the linear combination of $\boldsymbol{I}, \boldsymbol{A}$ and \boldsymbol{A}^{2}. Using recursion one can show that this conclusion holds true for any natural power of the matrix \boldsymbol{A}.

Product of alternating symbols

Important identity

$$
\in_{i j k} \in_{k \beta \gamma}=\delta_{i \beta} \delta_{j \gamma}-\delta_{i \gamma} \delta_{j \beta}
$$

Proof

Consider $\left|\begin{array}{lll}\delta_{11} & \delta_{12} & \delta_{13} \\ \delta_{21} & \delta_{22} & \delta_{23} \\ \delta_{31} & \delta_{32} & \delta_{33}\end{array}\right|=\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|=1$.
After row's permutation one gets $\left|\begin{array}{lll}\delta_{i 1} & \delta_{i 2} & \delta_{i 3} \\ \delta_{j 1} & \delta_{j 2} & \delta_{j 3} \\ \delta_{k 1} & \delta_{k 2} & \delta_{k 3}\end{array}\right|=\epsilon_{i j k}$.
Then, after column's permutation we obtain $\left|\begin{array}{lll}\delta_{i \alpha} & \delta_{i \beta} & \delta_{i \gamma} \\ \delta_{j \alpha} & \delta_{j \beta} & \delta_{j \gamma} \\ \delta_{k \alpha} & \delta_{k \beta} & \delta_{k \gamma}\end{array}\right|=\epsilon_{i j k} \in_{\alpha \beta \gamma}$.

Now, put $\mathrm{k}=\alpha$ and apply summation.
The result is as follows $\left|\begin{array}{lll}\delta_{i k} & \delta_{i \beta} & \delta_{i \gamma} \\ \delta_{j k} & \delta_{j \beta} & \delta_{j \gamma} \\ \delta_{k k} & \delta_{k \beta} & \delta_{k \gamma}\end{array}\right|=\in_{i j k} \in_{k \beta \gamma}$, or

$$
\begin{aligned}
& \in_{i j k} \in_{k \beta \gamma}=\delta_{i k}\left(\delta_{j \beta} \delta_{k \gamma}-\delta_{k \beta} \delta_{j \gamma}\right)-\delta_{i \beta}\left(\delta_{j k} \delta_{k \gamma}-\delta_{k k} \delta_{j \gamma}\right)+\delta_{i \gamma}\left(\delta_{j k} \delta_{k \beta}-\delta_{k k} \delta_{j \beta}\right)= \\
& =\delta_{j \beta} \delta_{i \gamma}-\delta_{i \beta} \delta_{j \gamma}-\delta_{i \beta} \delta_{j \gamma}+3 \delta_{i \beta} \delta_{j \gamma}+\delta_{j \beta} \delta_{i \gamma}-3 \delta_{j \beta} \delta_{i \gamma}=\delta_{i \beta} \delta_{j \gamma}-\delta_{j \beta} \delta_{i \gamma}
\end{aligned}
$$

Exercise: Using index formalism derive the following vector identity

$$
a \times(b \times c)=(a, c) b-(a, b) c
$$

BASIC DIFFERENTIAL OPERATORS (IN CARTESIAN C.S.)

Gradient of a scalar field $f=f(t, r)$

$$
\nabla f=\left[\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \frac{\partial f}{\partial x_{3}}\right]=\frac{\partial f}{\partial x_{i}} \boldsymbol{e}_{i} \quad \text { (vector) }
$$

∇ - nabla operator
Divergence of the vector field $\boldsymbol{w}=w_{i}(t, r) \boldsymbol{e}_{i}$

$$
\operatorname{div} \boldsymbol{w} \equiv \underset{\substack{\text { formal inner } \\ \text { product }}}{\nabla \cdot \boldsymbol{w}}=\frac{\partial w_{1}}{\partial x_{1}}+\frac{\partial w_{2}}{\partial x_{2}}+\frac{\partial w_{3}}{\partial x_{3}}=\frac{\partial w_{j}}{\partial x_{j}} \quad \text { (scalar) }
$$

Rotation (curl) of the vector field $\boldsymbol{w}=w_{i}(t, \boldsymbol{r}) \boldsymbol{e}_{i}$

$$
\begin{align*}
& \text { rot } \boldsymbol{w} \equiv \underbrace{\nabla \times \boldsymbol{w}}_{\begin{array}{c}
\text { formal vector } \\
\text { product }
\end{array}}=\left[\frac{\partial w_{3}}{\partial x_{2}}-\frac{\partial w_{2}}{\partial x_{3}}\right] \boldsymbol{e}_{1}+\left[\frac{\partial w_{1}}{\partial x_{3}}-\frac{\partial w_{3}}{\partial x_{1}}\right] \boldsymbol{e}_{2}+\left[\frac{\partial w_{2}}{\partial x_{1}}-\frac{\partial w_{1}}{\partial x_{2}}\right] \boldsymbol{e}_{3}= \tag{vector}\\
& =\in_{i j k} \frac{\partial w_{k}}{\partial x_{j}} \boldsymbol{e}_{i}=\in_{i j k} \frac{\partial w_{j}}{\partial x_{i}} \boldsymbol{e}_{k}
\end{align*}
$$

Gradient of the vector field $\boldsymbol{w}=w_{i}(t, \boldsymbol{r}) \boldsymbol{e}_{i}$

$$
G r a d \boldsymbol{w} \equiv \underset{\substack{\text { formal dyadic } \\ \text { product }}}{\nabla \boldsymbol{w}}=\frac{\partial w_{i}}{\partial x_{j}} e_{i} \otimes e_{j} \quad\left(2^{\text {nd }}-\text { rank tensor }\right)
$$

Divergence of the tensor field $T=t_{i j}(t, r) e_{i} \otimes e_{j}$

$$
\operatorname{Div} T \equiv \underset{\substack{\text { formal matrix-vector } \\ \text { product }}}{\nabla \cdot T}=\frac{\partial t_{i j}}{\partial x_{j}} \boldsymbol{e}_{i} \quad \text { (vector) }
$$

Scalar Laplace operator
$\Delta f \equiv \nabla \cdot(\nabla f) \equiv \nabla^{2} f=\frac{\partial^{2} f}{\partial x_{1}^{2}}+\frac{\partial^{2} f}{\partial x_{2}^{2}}+\frac{\partial^{2} f}{\partial x_{3}^{2}} \equiv \frac{\partial^{2} f}{\partial x_{k} \partial x_{k}}$

Vector Laplace operator

$$
\Delta \boldsymbol{w} \equiv \underbrace{\nabla \cdot(\nabla \boldsymbol{w})}_{\begin{array}{c}
\text { Divergence of } \\
\text { the tensor } \mathrm{w}
\end{array}} \equiv \nabla(\nabla \cdot \boldsymbol{w})-\nabla \times(\nabla \times \boldsymbol{w})=\boldsymbol{v}_{\begin{array}{c}
\text { Scalar Laplacian } \\
\text { of the component } w_{j}
\end{array}} \Delta w_{j} \quad \boldsymbol{e}_{j}=\frac{\partial^{2} w_{j}}{\partial x_{k} \partial x_{k}} \boldsymbol{e}_{j}
$$

NOTE: only in the Cartesian coordinate system the components of the vector Laplacian are equal to scalar Laplacians of the vector field components!

USEFUL DIFFERENTIAL FORMULAE

1) $\quad \nabla(\varphi \psi)=\psi \nabla \varphi+\varphi \nabla \psi$
2) $\nabla \cdot(\varphi \boldsymbol{w})=\nabla \varphi \cdot \boldsymbol{w}+\varphi \nabla \cdot \boldsymbol{w}$
3) $\nabla \times(\varphi \boldsymbol{w})=\nabla \varphi \times \boldsymbol{w}+\varphi \nabla \times \boldsymbol{w}$
4) $\nabla \cdot(\boldsymbol{u} \times \boldsymbol{w})=\boldsymbol{w} \cdot(\nabla \times \boldsymbol{u})-\boldsymbol{u} \cdot(\nabla \times \boldsymbol{w})$
5) $\quad \nabla \times(\boldsymbol{u} \times \boldsymbol{w})=\nabla \boldsymbol{u} \cdot \boldsymbol{w}-\nabla \boldsymbol{w} \cdot \boldsymbol{u}+(\nabla \cdot \boldsymbol{w}) \boldsymbol{u}-(\nabla \cdot \boldsymbol{u}) \boldsymbol{w}$
6) $\quad \nabla(\boldsymbol{u} \cdot \boldsymbol{w})=\nabla \boldsymbol{u} \cdot \boldsymbol{w}+\nabla \boldsymbol{w} \cdot \boldsymbol{u}+\boldsymbol{u} \times(\nabla \times \boldsymbol{w})+\boldsymbol{w} \times(\nabla \times \boldsymbol{u})$
7) $\nabla\left(\frac{1}{2} u^{2}\right) \equiv \frac{1}{2} \nabla(\boldsymbol{u} \cdot \boldsymbol{u})=\nabla \boldsymbol{u} \cdot \boldsymbol{u}+\boldsymbol{u} \times(\nabla \times \boldsymbol{u})$
8) $\nabla \cdot \nabla \varphi=\nabla^{2} \varphi \equiv \Delta \varphi$
9) $\nabla \times \nabla \varphi \equiv \boldsymbol{0} \quad, \quad \nabla \cdot(\nabla \times \boldsymbol{w})=0$
10) $\boldsymbol{\Delta} \boldsymbol{w}=\nabla(\nabla \cdot \boldsymbol{w})-\nabla \times(\nabla \times \boldsymbol{w})$

Exercise: Derive all the formulae using the index calculus.

Integral Theorems

GREEN-GAUSS-OSTROGRADSKY (GGO) THEOREM

Consider the vector field $\boldsymbol{w}=\boldsymbol{w}(\boldsymbol{x})$ defined in a 3D volume Ω bounded by sufficiently regular surface $\partial \Omega$. Then

$$
\int_{\partial \Omega} \underbrace{(\boldsymbol{w}, \boldsymbol{n})}_{\begin{array}{c}
\boldsymbol{w} \cdot \boldsymbol{n}+w_{n} \\
\text { component of } \\
\text { w normal to } S
\end{array}} d S=\int_{\begin{array}{c}
\Omega \\
\text { divergence } \\
\text { of } w
\end{array}} \nabla \cdot \boldsymbol{w} d \boldsymbol{x}
$$

We have analogous (dual) theorem with vector products, namely

$$
\int_{\partial \Omega} \boldsymbol{n} \times \boldsymbol{w} d S=\int_{\Omega} \underbrace{\nabla \times \boldsymbol{w}}_{\substack{\text { rotation } \\ \text { of w }}} d \boldsymbol{x}
$$

STOKES THEOREM

Consider the vector field $\boldsymbol{w}=\boldsymbol{w}(\boldsymbol{x})$, the closed line (loop) γ and sufficiently regular (yet arbitrary) surface S spanned (like a soap bubble) by this line. Then

POLAR AND CYLINDRICAL SYSTEMS OF COORDINATES

$$
\begin{aligned}
& x=R \cos \varphi, \quad y=R \sin \varphi, z \equiv z \\
& R=\sqrt{x^{2}+y^{2}} \quad, \quad \varphi=\arctan (y / x)
\end{aligned}
$$

$$
\text { Basic vectors: }\left\{\begin{array}{l}
e_{R}=e_{x} \cos \varphi+e_{y} \sin \varphi \\
e_{\varphi}=-e_{x} \sin \varphi+e_{y} \cos \varphi \\
e_{z}=e_{z}
\end{array}\right.
$$

Gradient of $f: \quad \nabla f=\frac{\partial}{\partial R} f \boldsymbol{e}_{R}+\frac{1}{R} \frac{\partial}{\partial \varphi} f \boldsymbol{e}_{\varphi}+\frac{\partial}{\partial z} f \boldsymbol{e}_{z}$
Scalar Laplacian of f :

$$
\Delta f=\frac{1}{R} \frac{\partial}{\partial R}\left(R \frac{\partial}{\partial R} f\right)+\frac{1}{R^{2}} \frac{\partial^{2}}{\partial \varphi^{2}} f+\frac{\partial^{2}}{\partial z^{2}} f
$$

Divergence of $\boldsymbol{u}=u_{R} \boldsymbol{e}_{R}+u_{\varphi} \boldsymbol{e}_{\varphi}+u_{z} \boldsymbol{e}_{z}: \quad \nabla \cdot \boldsymbol{u}=\frac{1}{R} \frac{\partial}{\partial R}\left(R u_{R}\right)+\frac{1}{R} \frac{\partial}{\partial \varphi} u_{\varphi}+\frac{\partial}{\partial z} u_{z}$
Rotation of $\boldsymbol{u}=u_{R} \boldsymbol{e}_{R}+u_{\varphi} \boldsymbol{e}_{\varphi}+u_{z} \boldsymbol{e}_{z}$:

$$
\nabla \times \boldsymbol{u}=\left(\frac{1}{R} \frac{\partial}{\partial \varphi} u_{z}-\frac{\partial}{\partial z} u_{\varphi}\right) \boldsymbol{e}_{R}+\left(\frac{\partial}{\partial z} u_{R}-\frac{\partial}{\partial R} u_{z}\right) \boldsymbol{e}_{\varphi}+\frac{1}{R}\left[\frac{\partial}{\partial R}\left(R u_{\varphi}\right)-\frac{\partial}{\partial \varphi} u_{R}\right] \boldsymbol{e}_{z}
$$

Vector Laplacian of $\boldsymbol{u}=u_{R} \boldsymbol{e}_{R}+u_{\varphi} \boldsymbol{e}_{\varphi}+u_{z} \boldsymbol{e}_{z}$:

$$
\boldsymbol{\Delta} \boldsymbol{u}=\left(\Delta u_{R}-\frac{1}{R^{2}} u_{R}-\frac{2}{R^{2}} \frac{\partial}{\partial \varphi} u_{\varphi}\right) \boldsymbol{e}_{R}+\left(\Delta u_{\varphi}+\frac{2}{R^{2}} \frac{\partial}{\partial \varphi} u_{R}-\frac{1}{R^{2}} u_{\varphi}\right) \boldsymbol{e}_{\varphi}+\Delta u_{z} \boldsymbol{e}_{z}
$$

SPHERICAL COORDINATE SYSTEM

$$
\begin{aligned}
& x=r \cos \varphi \sin \theta, \quad y=r \sin \varphi \sin \theta, \quad z=r \cos \theta \\
& r=\sqrt{x^{2}+y^{2}+z^{2}}, \varphi=\operatorname{arctg}\left(\frac{y}{x}\right), \theta=\operatorname{arctg}\left(\frac{\sqrt{x^{2}+y^{2}}}{z}\right)
\end{aligned}
$$

Basic vectors:

$$
\left\{\begin{array}{l}
\boldsymbol{e}_{r}=\boldsymbol{e}_{x} \sin \theta \cos \varphi+\boldsymbol{e}_{y} \sin \theta \sin \varphi+\boldsymbol{e}_{z} \cos \theta \\
\boldsymbol{e}_{\varphi}=-\boldsymbol{e}_{x} \sin \varphi+\boldsymbol{e}_{y} \cos \varphi \\
\boldsymbol{e}_{\theta}=\boldsymbol{e}_{x} \cos \theta \cos \varphi+\boldsymbol{e}_{y} \cos \theta \sin \varphi-\boldsymbol{e}_{z} \sin \theta
\end{array}\right.
$$

Gradient of $f: \quad \nabla f=\frac{\partial}{\partial r} f \boldsymbol{e}_{r}+\frac{1}{R} \frac{\partial}{\partial \theta} f \boldsymbol{e}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} f \boldsymbol{e}_{\varphi}$
Scalar Laplasjan of f :

$$
\Delta f=\frac{1}{r^{2}}\left[\frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r} f\right)+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta} f\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}} f\right]
$$

Divergence of $\boldsymbol{u}=u_{r} \boldsymbol{e}_{r}+u_{\theta} \boldsymbol{e}_{\theta}+u_{\varphi} \boldsymbol{e}_{\varphi}:$

$$
\nabla \cdot \boldsymbol{u}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} u_{r}\right)+\frac{1}{r \sin \theta}\left[\frac{\partial}{\partial \theta}\left(u_{\theta} \sin \theta\right)+\frac{\partial}{\partial \varphi} u_{\varphi}\right]
$$

Rotation of $\boldsymbol{u}=u_{r} \boldsymbol{e}_{r}+u_{\theta} \boldsymbol{e}_{\theta}+u_{\varphi} \boldsymbol{e}_{\varphi}:$
$\nabla \times \boldsymbol{u}=\frac{1}{r \sin \theta}\left[\frac{\partial}{\partial \theta}\left(u_{\varphi} \sin \theta\right)-\frac{\partial}{\partial \varphi} u_{\theta}\right) \boldsymbol{e}_{r}+\frac{1}{r}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \varphi} u_{r}-\frac{\partial}{\partial r}\left(r u_{\varphi}\right)\right] \boldsymbol{e}_{\theta}+\frac{1}{r}\left[\frac{\partial}{\partial r}\left(r u_{\theta}\right)-\frac{\partial}{\partial \theta} u_{r}\right] \boldsymbol{e}_{\varphi}$
Vector Laplacian of $\boldsymbol{u}=u_{r} \boldsymbol{e}_{r}+u_{\theta} \boldsymbol{e}_{\theta}+u_{\varphi} \boldsymbol{e}_{\varphi}:$

$$
\begin{aligned}
\Delta \boldsymbol{u} & =\left[\Delta u_{r}-\frac{2}{r^{2}} u_{r}-\frac{2}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(u_{\theta} \sin \theta\right)-\frac{2}{r^{2} \sin \theta} \frac{\partial}{\partial \varphi} u_{\varphi}\right] \boldsymbol{e}_{r}+ \\
& +\left(\Delta u_{\theta}+\frac{2}{r^{2}} \frac{\partial}{\partial \theta} u_{r}-\frac{1}{r^{2} \sin ^{2} \theta} u_{\theta}-\frac{2 \cos \theta}{r^{2} \sin ^{2} \theta} \frac{\partial}{\partial \varphi} u_{\varphi}\right) \boldsymbol{e}_{\theta}+ \\
& +\left(\Delta u_{\varphi}+\frac{2}{r^{2} \sin ^{2} \theta} \frac{\partial}{\partial \varphi} u_{\varphi}+\frac{2 \cos \theta}{r^{2} \sin ^{2} \theta} \frac{\partial}{\partial \varphi} u_{\theta}-\frac{1}{r^{2} \sin ^{2} \theta} u_{\varphi}\right) \boldsymbol{e}_{\theta}
\end{aligned}
$$

