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ALGEBRA OF VECTORS AND TENSORS

Orthogonal basic unary vectors (versors) : ey, e,, €3
S
Any vector in E*is expressed as unique linear combinations of the basic versors
a=a,e, +a,e, +a,6; =a;6; - summation (Einstein) convention
a=[a,,a,,a,] - canonical equivalence of E* and R®

INNER (SCALAR) PRODUCT

Let a = a,;€; and b:bjej. We define the inner product of a and b:

Note that (a,6,) =&, hence we canwrite a=(a,€;)e,




VECTOR (CROSS) PRODUCT

We define the operation X on the basic vectors:
€, X€,=€; , &, X€; =€, , €5X€, =86,,

eiXei :O , eIXeJ:_eJXel
H/__/
no summation!

Assuming linearity with respect to both arguments, we extend this operation to all vectors in
the space E’

axb=ag xb;e; =ab; e xe; =(ab; —ab,)e, +(ab, —ajb;)e, +(ab, —ab)e;
Practical way of computing the vector product

e1 eZ e3
axb=la, a, a,|=
bl b2 b3

d
b2 b3

d; 43
b, b,

q &

el B bl b2

e, + €,




ALTERNATING SYMBOL

( 0if i=j or i=k or j=k
€= 1 1T {i,],k} Is an even permutationof {1,2,3}
—11if {I, J,k} I1s an odd permutation of {1,2,3}

For instance we have €,3=—1 , €,,=0 , &,,,=1
The vector product of a and b can be nicely written as follows
axb=¢; ajhe

Another useful operation is the mixed product of three vectors

al a‘2 a'3
a-(bxc)={b, b, byj=€; abc,
Cl C2 CB

Determinant of the matrix A (dim A = 3): det A =€jjk A8y 85




2"°_RANK TENSORS IN E®

Tensors as bilinear transformations (functionals) E*xE® — R
T(a X+, %, Y) =0T (X, Y)+a,T(X,,Y),
T(X, Y +ayp,) =T (x, y) +a,T(x,p,).

For two arbitrary vectors x and y we can write

T(X,y)=T(xe,y;e;)=XY;T(€,8;)=t;XV;

Bi-linearity means that

The matrix T such that [T]ij =1; represents the tensor T in the assumed reference frame
(or with respect to assumed basic versors)

Some operations on tensors:

Addition: T =T,+T, = T=T,+T, =t :ti} _|_tij2
Multiplication by ascalar T =T, = T =0T, =t :,Bti}
Multiplication of two tensors T =T,T, = T =T,T, = tij =ti1kt|fj

Scalar (Frobenius) product of two tensors S=T,:T, = ’[i}’[ij2 (double summation!)




Basic linear functionals E° — R:

fi(e;) =6

In the case of the orthogonal base, the basic functionals (covectors) can be identified
with the “normal” base. The “canonical” identity between base and co-base follows from
the following formula

f(w)=(e,w) , i=123, weE’
Tensor product of the basic functionals:

(i ®1,)(X y)=§i(X) T;(y)=1;(x&) T;(Yn€n) =
=X Ym fi (&) Ti(8n) =X Y (€i,€)(€:€m) = X YmOuOim = XY

Thus we can write T(X, y) :tuxlyj :t” (fl ® fJ)(X, y) or T :t” fl ® f]
Due to the above identification between base and co-base we may equally well write

The linear space of the 2"-rank tensors is 9-dimensional.




ORTHOGONAL TRANSFORMATIONS OF COORDINATE SYSTEMS

Assume that different basic vectors are iIntroduced Ae,
€1, €5, €5 (see figure). These vectors can be expressed by 5o
means of the “old” basic vectors.
. r __ r “
Consider € =7,€ , €;,=Z7;,€E. e

The orthogonality condition for the new base yields

(1) =05 =(&,€}) =2y Zjm (&, 8m) = Zi ZjmOym =
=Ly ly = (ZZ"); =(Z2"Z);

We conclude that the transformation of the basis preserves orthonormality of the basic

vectors if and only if the transformation matrix Z satisfies the relation Zt=2Z" ie., it
Is the orthogonal matrix.




Each vector x from E> can be expressed with respect to both basis, namely
X =X =X86.

meaning that

X =2;X;=(Z" )i X; =(Z7); X

and

These are the transformation rules for the vectors!
Consider the tensor T and its representation with respect to both basis (reference frames)
T(X, y)=txy; =tXYij.

We can write

T(X, Y) =% =1 2 X Zni Y = X Zili Zong Y =

(ZT)
T T
=X (ZT)4(ZT) i Yoo =% (ZT Z7 )iy Yo =Xl Vi

(ZTZT), Ym




The matrix representing the tensor T in the new base is given as
T=2T2Z2"'=2TZ"

Thus, we have obtained the transformation rule for the 2" _ rank tensors!




DIFFERENT VIEW: 2"° _RANK TENSORS AS LINEAR MAPPINGS £° — £3

Consider the 2"-rank tensor T and two vectors x and v.
We have T(X,Y) =Xty =XW =(x,w).

W inner
! product

The vector w can be defined as W =%y .

The linear transformation T : E® — E3 is defined by its action on the basic versors as

Indeed, for any vector w we get
Equivalence between 2-rank tensors and linear mappings can be established as follows

ToHT: TXY)=(X%y) ., T->% Zy=T(e;,VY)e,.




EIGENVECTORS, EIGENVALUES AND TENSOR INVARIANTS

The eigenvalue problem:

1% formulation: find A € C and nonzero w such that YW =AW, or
2" formulation: find L € C and nonzero w such that T (X,Vv) =A(X,V) for each vector X
from the space E°.

Equivalently, we have

(v

—Av;)e; =0 = p;(4)=det(T —11)=0.
Thus eigenvalues are the roots of the characteristic polynomial pr(4).
Tensor T is symmetric when T (X, y) =T (Y, X), i.e. when t;; =t; (check!) or T =T'.

If the tensor T is symmetric then its all eigenvalues are real and the eigenvectors
corresponding to different eigenvalues are orthogonal (the proof can be found in standard
algebra textbooks).




The characteristic polynomial is invariant, i.e. it is the same in all orthogonal reference
frames. Indeed, according to the transformation rule we have

p; (A1) =det(T'—Al)=det(ZTZ* - Al)=det [Z(T-A1)Z '] =
=det Z-det(T —A1)-detZ ' =det Z -det(T —A1)-(det Z) ™ =det (T - A1)

We are mostly interested in 3D case. Then, we can write

p;(A)=-A°+J,4* -, 1+,

where
J =trT =t; =t +1,+t,;  (“t” means trace),
J, =3(trT)>—trT?] (calculate for 2D case!),
J,=detT.

The following relations hold between invariants and the eigenvalues (Viete formulas for
3"-order polynomial)

h=hthtly  =Ahthhthh  J3=444




CAYLEY-HAMILTON THEOREM

Any square matrix A satisfies its own characteristic polynomial p,(4) =det(A—A1l), i.e.
we have p,(A)=0.

Proof:

For invertible square matrix M we have M™ = (det M )_1 (cof M)'. Thus
M (cof M) =detM - 1. Let M=A—-Al. Then B(A):=[cof (A—A1)]" is the
matrix polynomial of the order not larger than n -1 (n — dimension of A)

B(1)=A""'B,_,+A""'B, _,+..+ 1B, + B,

and we have

(A=A1)(A"*B, , + A" B, +..+ AB, + By =
=det(A=A1)- 1 =(A"+C, A" 4. 4G A+ C)) |

The above equality is satisfied for any number A so the corresponding matrix coefficients at
both sides should be the same.




Thus
-B, ;=1
_Bk—l—l_ABk:CkI y k:n_l,n_z,..,l
AB, =, |
Let’s multiply (from the left side) the first equation by A", the second one by A" and so on

(then the last equation remains unchanged) and sum up all equations. The left-hand side of the
obtained equation is zero since all terms will cancel out in pairs! Thus we get

0=A"+c A" +..+CcA+cl = p.(A)
as stated.
For the matrices with the dimension equal 3 we have  —T ° + J1T2 —-J,T+J;1 =0.

This relation will be used in the section devoted to the constitutive relations in fluid
mechanics. In particular, note that the third power of such matrix can be expressed as the
linear combination of I, A and A?. Using recursion one can show that this conclusion holds
true for any natural power of the matrix A.




Important identity

Proof
O Oy
Consider |0,;  O,,
031 Oay

PRODUCT OF ALTERNATING SYMBOLS

Sijk Skgy = é}ﬂ5jy - 5i75jﬂ

After row’s permutation one gets 51-1 5j2 5]3 =Eij

1 00
=0 1 0|=1
0 01
01 Oz O
5kl §k2 5k3
5ia é‘iﬁ é‘iy/

Then, after column’s permutation we obtain |0}, 0,5 Oj,| =€ Epp,-




Now, put kK = a and apply summation.

é‘ik 5Iﬂ é‘iy
The resultis as follows |0y, 05 Oj,| =€ Exp, » OF
O O%p O

Siik Skpy = O (5jﬂ5k7/ _5kﬂ5jy) —é}ﬂ (5jk5k;/ — O 51'7) +5i7 (5jk5kﬂ — O 5jﬂ) =

3 3

=00, = 01505, = 0i0j, + 3050}, + 0,50, =300, = 050}, =0j0;,
Exercise: Using index formalism derive the following vector identity

ax(bxc)=(a,c)b—(a,b)c




BASIC DIFFERENTIAL OPERATORS (IN CARTESIAN C.S.)
Gradient of a scalar field f = f (t,r)

Vf:{af of 81‘}_@% (vector)

OX, OX, 0%y | OX,
V - nabla operator
Divergence of the vector field W =W, (t, r) e
: OW, OW, OW, OW;
divw= V.w =214  “73_""]

formal inner axl axz axg axj
product

(scalar)

Rotation (curl) of the vector field w =W, (t,r)e,

rotw= Vxw = OW;  OW, e, + OW, OW, e, + oW, 0w, e, =
formal vector 8X2 aXB aXS aXl aXl axz

product (vector)




Gradient of the vector field

Gradw =

w=Ww(t,r)e

Vw

formal dyadic

product

8W

X;

e®e

Divergence of the tensor field T =t; (t,r)e, ®e¢;

DIVT = VT e
formal matrix—vector 6x
product
Scalar Laplace operator
2 2 2 2
AfEV-(Vf)EVZf:aZ+aZ+aIE ot
OX ~ OX, OX;  OX.O0X,

(2" —rank tensor)

(vector)




Vector Laplace operator

2
O0°W,
Aw=V-(Vw)=V(V-w)-Vx(Vxw)= AW, e, = —e,
— OX, OX,
Divergence of Scalar Laplacian
the tensor Vw of the component w;

NOTE: only in the Cartesian coordinate system the components of the vector Laplacian
are equal to scalar Laplacians of the vector field components!




1)
2)
3)
4)
9)
6)
/)
8)
9)
10)

USEFUL DIFFERENTIAL FORMULAE

Vipy) =y Vo+pVy

V- (pW)=Veo-W+pV-w
Vx(pW)=Voxw+@V xWw
V-(uxw)=w-(Vxu)—u-(Vxw)
Vx(uxw)=Vu-w—-Vw-u+(V-w)u—(V-u)w
Vu-w)=Vu-w+Vw-u+ux(Vxw)+wx(Vxu)
V(u?)=1V(u-u)=Vu-u+ux(Vxu)
V-Vp=Vip=Agp

VxVp=0 , V-(Vxw)=0
Aw=V(V-w)-Vx(Vxw)

Exercise: Derive all the formulae using the index calculus.




INTEGRAL THEOREMS

GREEN-GAUSS-OSTROGRADSKY (GGQ) THEOREM

Consider the vector field w=w(X) defined in a 3D

volume 2 bounded by sufficiently regular surface 0O (.
Then

J' (w,n) dS:j V-w dx

\ﬁ/_/

002  w-n=w, 0 divergence
component of of w
w normal to S

X4

We have analogous (dual) theorem with vector products, namely

jnxwdS ijde

0 rotation
of w




STOKES THEOREM

Consider the vector field wW=w(X), the closed line

I Vxw (loop) vy and sufficiently regular (yet arbitrary) surface S
<\ spanned (like a soap bubble) by this line. Then
t

S n
\ <j> (w,7) dl_j(wwn) ds
WT W= component of
component of rotw normal to S
X2 w tan gent to y




POLAR AND CYLINDRICAL SYSTEMS OF COORDINATES

T_R X=Rcosep , y=Rsing , z=2

X\ R={X*+y® , @=arctan(y/x)

X e; =€,Cosgp+e,sing
v _ | - _
- AN Basic vectors: 1 €, = —€, SIN@+€ COS@
" \ez :ez
Gradient of f : Vi =g fe,+gsfe, +5 e,
Scalar Laplacian of f : Af=22(R& f)+%aa—;2 f +a%22 f

Divergence of U=Ug€, +U € +UE,: V-U=gZ(RU)+55U +2U,
Rotation of U= Ug€; +U €, +U,E,:
— (1 0 0 0 0 1T_0 0
qu_(ﬁa_(puz_ﬁugo)eR +(§UR—6—Ruz)e¢+ﬁ[ﬁ(Ru¢)—%uR]ez
Vector Laplacian of U=Ug€, +U € +U,E,:

Au=(AUg —5Ug — 552U Jeg + (AU, + 5 U ——=U Je, +AU,E,




SPHERICAL COORDINATE SYSTEM

A X=rcosesing , y=rsingsing , z=rcosé
2 2
0 r=yx*+y*+2, p=arctg (%), 0 =arctg (1)
X E Basic vectors:
I ( . . -
! e =e.sinfcosp+e, sindsingp+e, cosd
' > :
~ .. T y .
1€, =—€,Sinp+e, Ccose
. ¢ &, =€,C080Cosp+e cosdsing—e,sing
Gradient of f : Vi=5fe+z5fe,tmu5Te,
Scalar Laplasjan of f : Af =%[§( )+ 506IN05 )+ M(p 1]

Divergence of U=U €, +U,E, +UE

V-u= 28r(r u.)+—=-[5(u, S|n6?)+a¢ w]




Rotation of U=U,€ +U,€E, +U € :
Vxu= [ U, sind) - u,)e, +1lsz5 U —5(ru )le, + 1[5 (ru,) — 55U, le,
Vector Laplacian of U=U €, +U,E, +U € :

Au=[Au, -5 U, —

rsm@

u,le +

r

Hae(u smé’)— 9@

2 0 1 2c0sf 0O
+(A“e+r—zﬁur—m“e—rs.naa¢ u,)e, +

2 0 2cosfd 0 L 1
T (AU(P T r’sing o u(” T r?sin’g o u9 r?sin®o u(ﬂ)69




