
 

 

 

LECTURE 4 

BASIC METHODS FOR NONLINEAR 

ALGEBRAIC EQUATIONS 

 

 

 

              



 

In this lecture, we discuss the problem how to find numerically the approximate solution to the 

nonlinear algebraic equation 

( )f x 0  

In the above, the symbol f  refers to a given function. Usually, such equation cannot be solved 

analytically. Consider for instance 

sin( )

tan ( )

5 2

x

1

x x 4x 1 0

e x 0

4 x x 0





   

 

  

 

The only possibility is to find an approximate value of the solution (the root of f) by means of 

some iterative calculations. In this lecture we present a number of the most elementary 

approaches to this problem. 

Note: in the CS2 course we consider only the case of a single equation. The algorithms for the 

nonlinear algebraic systems of equations will be covered by more advanced courses of 

numerical methods. 

 



THE BISECTION METHOD 

Let’s begin with the method of bisection. It is very elementary approach. Its “mechanics” is 

explained graphically in the figures below 

 

Once the interval containing the root has been found, it is subsequently halved and the half 

containing the root is recognized. The identification of the proper half is based on the 

assessment of the sign of the function values at the endpoints of the current subinterval.  

Since the function is assumed continuous, the presence of the root is guaranteed in the 

subinterval with opposite-sign endpoint values of the function.   



Pseudo code of the bisection method is shown below 
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if f f 0 then

while x x 2 do
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if f f 0 then
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else
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endif

enddo

return x

else
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return to START

endif
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Assume we want to determine the root x  with the absolute error  , i.e., we will terminate the 

bisection process as soon as  

Mx x     

 

Note that after n steps of the process we have the estimate 
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Thus, the number of steps which guarantees achieving a desirable accuracy is  
 

log2

b a
n




  

 

Bisection method – pros and cons 

Pros:  if the initial interval is property chosen then the bisection method will always converge 

to the root (some root) of the continuous function f 

Cons: the method is essentially insensitive to the local shape of the function (like the slope) and 

usually converges rather slowly (requires many evaluation of the function f, which can be very 

costly). 
 



METHOD OF TANGENTS (THE NEWTON’S METHOD) 

The Newton’s method is a very efficient 

method of finding roots of the sufficiently 

smooth functions. The idea of this method is 

explained graphically in the figure below. 

Thus, the next approximation to the root x  is 

defined as the abscissa of the point of 

intersection between x-axis and the line 

tangent to the plot of the function f.  
 

The equation of the tangent line reads  

             ( )( ) ( )n n ny f x x x f x    

Then, from the equation 

        

we obtain     
( )
( )

n
nn 1

n

f x
x x

f x
 


 

 

10 ( )( ) ( )n n n nf x x x f x
  



 

We will show that the method of tangents exhibits (under some conditions) a quadratic 

convergence. To this aim, we apply the Taylor expansion formula and write 
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In the above,  [min( , ),max( , )]n nx x x x   . Next, since ( )f x 0   one obtains 
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Thus, we conclude that        
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The following local convergence theorem can be now formulated: 

Assume that for the certain interval ( , )I x x       the following conditions hold: 
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Then  for each 0x I  and such that M
02m x x 1     the following estimate is valid  
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which leads to the conclusion that 1x I  and by the induction argument  
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REMARK: Note that the above theorem provides condition which guarantee the local 

convergence only. In other words, the Newton’s method will “typically” achieve the quadratic 

convergence rate providing that it is already sufficiently close to the solution. On the other 

hand, if the initial point x0 is not sufficiently close to x   then the Newton’s iterations will not 

converge to this root (and perhaps they will diverge to infinity). 

What if other assumptions do not hold? Consider the following counterexample: 

( ) 2f x x 2x 1 0 x 1       
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Eventually,    ( )1
nn 1 2x 1 x 1      which shows that the distance from the root shrinks 

linearly (by the factor of ½) during the process. The Newton’s method fails to achieve quadratic 

convergence because the ( )f x 0
  . 

 

 



More examples (exercises for the Reader) 

1. Show that if ( ) ( )
m

f x x a   then the Newton’s method generation then ( )( )1

n 1 nm
x a 1 x a


    . Note 

that for large m the convergence can be pretty slow! 

2. Analyze the convergence rate (to the zero solution) of the Newton’s method applied to the equation  

/3 2
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Consider some other examples which demonstrate the possible “pathological” behavior of the 

Newton’s method. 

Example 1:  The region of local convergence can be 

pretty narrow like for the function  

( ) ln( ) /f x x x   with  x 1

 . It can be clearly 

seen from the figure below that the choice of any 

starting point located on the right-hand side of the 

function’s maximum leads to divergence to infinity. 

On the other hand, point located on the left-hand 

side but to close to minimum will yield the next 

approximation beyond the domain of the function 

(which is R+) 



Example 2: The iterations of the Newton’s method can 

loop in a cycle. An example (rather artificial) of such 

behavior is provided by the function 

 

( ) sin( )f x x  

 

Imagine, we start the iterations from the initial point 0x  

such that 
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Then 
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So – at least theoretically – the iterations cycle forever between two values: 0x  and 0x .  

Problem: In reality computers always make approximations (the computer arithmetic is not exact). What is the 

sensitivity of the above cycling behavior to small (and inevitable) perturbation of the data? Perform such analysis 

analytically (not trivial) or by the computer experiment. 



METHOD OF SECANTS 

The possibly weak point of the Newton’s method is that it requires to compute the value(s) of 

the 1
st
 derivative. This may pose a problem, especially when the explicit formula for the 

function f is not available. This difficulty is surpassed by the method of secants. The 

“mechanics” of this method is explained in 

the figure. 

 

This time, the next approximation n 1x  to 

the root x  is defined as the abscissa of the 

point of intersection between x-axis and the 

secant line passing through the points 

( , ( ))n 1 n 1x f x   and ( , ( ))n nx f x .  

The equation of this line is  
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Thus, one obtain the formula of the method of secants 
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We will analyze the convergence of the method of secants. Using the Taylor expansion 

theorem, we write 
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The triple-dot symbol indicated that all higher-order terms (H.O.T.) follows.  

 



The further calculation proceeds as follows: 
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Hence, we have arrived at the asymptotic formula 
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We would like to derive an explicit estimate which involves only n  and n 1  . 

To this aim, we anticipate the final form of this estimate as  n 1 nK     . 
 

It follows that  
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However, both forms of the relation between n  and n 1   must be equivalent. Hence 
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Note also that      
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Since 1 2   we say that the convergence rate of the method of secants is superlinear. 

 

The method of secants is sensitive to “pathologies” similar to those discussed for the Newton’s 

method. In particular, it is convergent only locally, which practically means that the initial 

approximation of the root must be sufficiently accurate.  

On the other hand, an interesting modification is the “false position” variant (Regula Falsi). 

This modification is illustrated in the following figure. 

 

 

 

 

 



 

The basic difference between method of 

secants and the Regula Falsi consists in the 

following. In the case depicted in the Figure, 

the point xn+1 would be located where the 

green line crosses the x-axis. In the falsi 

rule, this point is where the red line crosses 

the x-axis. In other words, the secant line is 

spanned between two most recent points 

located at opposite sides of the x-axis. If two 

first point of the Regula Falsi iterations 

bracket the root then the convergence is 

guaranteed. On the other hand, the 

superlinear convergence is lost.  

 

 

Yet another approach is the method of simple iterations which we will discuss next. 

 

 



METHOD OF SIMPLE ITERATIONS 
 

Consider the nonlinear algebraic 

equation in the form 

( )x g x  

It natural to define the following 

iterative process (simple iterations) 

        ( )nn 1
x g x


  

Note that if this process is convergent 

to certain value x

 then automatically  

( )x g x   

 

In other words: the solution is the fixed point of this iterative process. 

 

 



In the figure above, the convergence of the process is evident. Is this always the case? What is 

the rate of convergence? It turn out that the answers to both questions involve just one number: 

the value of the 1
st
 derivative ( )g x


 . 

 

To assess the rate of convergence of the simple iteration process we proceed as follows: 
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Then, for sufficiently small distances from the root the following relation holds 
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We immediately conclude that the root x

 is the attracting fixed point of the simple 

iterations if and only if 
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Note:  If  the following conditions hold at the root x  
 

( )g x 0
   and ( )g x    

 

then the simple iteration method is quadraticly convergent.  
 

Indeed: 
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Example: The formula of the Newton’s Method can be interpreted as the simple iteration procedure for 

the function   

( )
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
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Now, if the first derivative is not zero and the second derivative is bounded then  
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and thus the method is quadraticly convergent (as we already know). 

 

Note: if ( )g x 1   the method of simple iterations will typically diverge or it will be 

convergent only for specially chosen initial points (the Reader is advised to elaborate on 

details). It case of multiply roots, the converge to other root may also occur. 


