R.Maronski: Analytical mechanics

INTRODUCTION TO CALCULUS OF VARIATIONS

Brachistochrone problem
The problem was posed by John Bernoulli (1667-1748) in 1696. brachist = shortest, chronos =
time (from the Greek)

Ny,
>

A a X

Y
Problem formulation

A bead slides under the gravity along a smooth wire joining two fixed points A and B (not in the
same vertical line). The bead is released from rest at A and it should slide to B in minimum time.
The question is: what shape of wire should be? [A(0,0),B(a,b)] — coordinates of points A and B

B B
Velocity v o g =  time T=[dt= LNV
dt Vv A A
The total energy is conserved, so
mv? 1/2
- may = v=(2gy)

For  ds?=dx? +dy? —  hence ds= (dx2 +dy2)1/2 = dx(1+ y2 |’

Substituting v and ds we have

T=

Loy 1/2
Y J dx| = is minimized.
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The simplest problem of calculus of variations
Find the smooth curve y = y(x), which joins the fixed points A(0,0) and B(a, b) that gives the
functional

a
I(y) = [f(x.y,y")dx
0
its minimum value. The boundary conditions are y(0) =0, y(a) = b.

Another formulation
Find the smooth curve x = x(t) that gives the functional

)= [t x Xt

its minimum value and satisfies the boundary conditions
X(to) = Xo, X(t) = X1,
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I(x) — it is functional. For x(t) given the integral 1(x) leads to a specific numerical value. Integral
I(x) acts on a set of functions to produce a corresponding set of numbers.
functional

T

a set of functions

Sample problem (G. Twardokens, 1990)
The skier is on the slope. He/she should cover the distance from A to B in minimum time. Find
the shape of his/her path.

function

The fixed end — point problem
Minimize the functional

I(x)
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with boundary conditions

. X(to) = Xo, X(tl) = X1.
Definition: The curve x = x (t) minimizes functional, when

) 109> 1(x)
for all curves x = x(t) satisfying boundary conditions. Equality condition is satisfied only when
x(t) and x(t) coincide, x(t) = x (t).
This definition is not particularly useful. If gives no algorithm how x"(t) might be found.

It requires that each candidate x(t) be tested using (*). The number of admissible curves x(t) to be
considered goes to infinity.

Local minimum
The functional attains a local minimum if the condition (*) is valid only for x(t) from the
¢ — neighbourhood of x"(t)

‘X - X*‘ < g, where ¢ is small.
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Global or absolute minimum
The functional attains a global minimum if the condition (*) is valid for any x(t) taken from an
admissible domain of x(t) (e is not small number).

ft) global maximum

local maximum

NS

global minimum te<ab>

-

Ny,
>

Remark: Maximization of the functional may be converted into minimization of the functional
changing the sign of the functional.
A

N
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At that stage of considerations we consider the curves x(t) from a set of twice continuously
differentiable functions — C? class. Now, we must clarify what we mean by saying that two
curves are close to each other.

Definition: A weak variation
Let x"(t) be a minimizing curve and x(t) an admissible curve, i.e. the curve of C* class satisfying
boundary conditions. Then, if there exist small numbers &; and &, such that

X(O)-x"®]<e;, and  |x(t)-x"(1) <z,
forall tin <tp, t;>, than
3x(t) = x(t) — x"(t) is said to be a weak variation of x"(t).
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A
x()

Definition: A strong variation
Let x"(t) be a minimizing curve and x(t) an admissible curve. If there exists a small number ¢
such that

x(t)-x"(®[<e  foralltin<to, t >, then

3x(t) = x(t) — x"(t) is said to be a strong variation of x (t).

A x(t) x(t) B

|

|

|

|
t, t
Remark: Weak variations are a sub—class of a class of strong variations. Some strong variations
are weak variations. The inversed statement is not true.

The first necessary condition of local minimum
Let the neighbour function be in the form

x(t)=x"(t)+en(t), where
& - a small quality, 8x(t)=en(t) -a weak admissible variation, n(t) — a function of the class C*
satisfying boundary conditions

n(te)=n(t;)=0.
Definition: The increment of the functional | is

A2 I(x() - 1(x" (1))

Thus
t
Al = I(x* + sn)— I(x*)z J.[f(t, X +en, X + sﬁ)—f(t, X', x) dt.
to
Ateach tin <t t; > we expand f(t, X+ gn,x* + sﬁ) in a Taylor series in the two variables

en and en about (x*(t),x*(t)). All partial derivatives of f are to be evaluated on the minimizing
curve.
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t 2 2
(of of , , % oM
Al = — dt+= + dt+0
gt{ﬁaxn x j gf( oo™ 6inj )
V, V,

1 2

8l = ¢V is called the first variation of the functional,

1 . .
8% = Eszv2 is called the second variation.

From definition of minimum AI >0
Al'= &V, +0.5eV, +0(e?))> 0.
The small quality € may be positive or negative, therefore
V, +0.5¢gV, +0(82)Z 0, fore>0,
V, +058V, +0(2)<0, forz<0.
Now let € — 0 (positive or negative). We must have both ;> 0 and V1< 0. It is possible for V; =

0 for all n(t).
The necessary condition is

Vi= J.&n+ —ﬂ dt =0 for all n(t).

|ntegrat|ng
by parts

t t t
¢ of of |* ¢ dfof
V,=|| =—mldt+|n—| - dt =
: t{(ax“j [”aXL I dt( j
of 1*
[n—l =0 for n(to ) =n(ty) = 0.
OX |,
Because m(to ) =mn(ty) =0 we can re—write as

t1
2 8(Dha—o
ox dt\ox

t, free

Integrating by parts

continuous
It may be shown that, if x = x"(t) is of C? class (the term in the curly brackets is continuous

function of time t) and n(t) is unspecified, the term in the curly brackets should be equal zero.
The proof is not trivial, however.

Theorem: The necessary condition of the local minimum of the functional I on the curve x =
X (t) of C? class is that

d (8f _of

dt a_xj x

This differential equation is called the Euler—Lagrange equation.

Example: Find the extremal of the functional
2
| = [ Xt dt
1

for the boundary conditions x(1) = 0, x(2) = 3.
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Solution:
f(t,x, %)= x*t%; I o, §_=2>‘<t3
OX oX
The Euler — Lagrange equation is
d(,..3
—\2xt° |]=0 .
The integral is xt® = C, = const, or
ax_G
dat  t%
Separati iabl _[Sat+c d __Sc
eparating variables x_It—S t+C, an x_—2t—2+ 5.
When we apply the end conditions
2
8
we find
4
X = —t—z +4

The fixed—end points problem for n unknown functions

Minimize the functional
tl

I(x)=[f(t.x;, %;dt) - MIN  fori=1,..,n

L A |

and boundary conditions: X(to)=x2,  x;(t,)=xi.
The increment of the functional is

Al ton of of
AI:I flt,x; + & m,X +en, —f(t,xi,xi)dt = SIZ — M+ = dt+0(82),
. mngin L | X, X,
t the same expandingin ¢ i=1 i i
0 foralln; Taylor series  ° —
integrating
by parts
- _to
0, of P (of df of
Sl = Z_a. N "‘J (8 _a(—a. ndty=0.
i-1 OX; _0,employing g i1\ OK X
bonduary =0, because i
bt =0, n, areindependert
L conditions | t, cachother

The terms in the brackets are equal to zero, (-) = 0;, because n; are independent each other. We
can select them identically equal to zero n; = 0 except one. Finally we can obtain a system of

Euler-Lagrange equations
d(afJ of 0 i=1,..,n.

dtlox, ) ox,
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There are ordinary differential equations of the second order. Their solutions contain 2n arbitrary
constants which may be computed employing boundary conditions:

X;(to)=x;, X;(t;)=xi.
Problem in which the end point is not fixed
Minimize the functional

4
I=[f{tx,x)dt - MIN
to

when (to, Xo) is fixed, i.e. X(to) = Xo , but (t1, x1(t)) is required to lie on a given curve
A o(t)
x(t)

t, (g +Ar))
Let x (t) be the minimizing curve, c(t) — the target curve,
&x = x(t) — X (t) = en(t) be a weak variation,
At - is small, it is O(g) — it is small of degree ¢.
In the previous section the variation at the final point was zero, 6x(t1) = en(ty) = 0.
Here such condition should be replaced by following considerations.
X(t, + At)=X"(t, + At)+en(t, + A1) = X(t)+ X (t,)Ar+en(t,)+ 0(e?) .

expanding
in Taylor
series

But the final point should be on a target curve
X(t,+At)=c(ty+At) = clt,)+¢(t;)AT+0(E?) .

expanding
Right hand sides of above equations are equal each ther therefor
’ ) F % (6 A+ e1(ty ) olty) + €, A

because x (t1) should reach the target curve c(ty), and

*) m(tl) = [C(tl)_ X*(tl)] At|.

The variation in functional 1 is given by
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81 = [ #(t,x" +en, X" +eﬁ)dt—}f(t,x*,>'<*)dt -
’ t

0

e+ on.x” + en) £t % Jat o 6t "+ on, 5"+ eiae =
t,

This integrandwasconsideredealier. Expanding in Ty lorseries
Expanding and int egrating by parts.

SO {ﬁ_i(ij}dt+m(tl)gf7(tl)_g nlte) T ito)+ tlty x5 ae

s
o itisarbitrar ox  dt\ox =0 from
=0,E—-L equation initial condition
of )
+— _enAt+— _enAt = 0.
X i(,:tx _0(“ ?) X i(fx the necessarycondition
o TUE o of extremum3I=0

We retain only terms of order €. We use the fact that X (t) is an extremal to obtain
81 =f(t,)At+ m(tl)ﬂ(tlﬁ 0(e?)=0.
—— OX

from(*)
Employing (*)
o1 {0+ () ()15 ()} o7) 0.
oX By
=0
Finally
V) flt)+[olt)- X @S ()=o),

This is the transversality condition. It replaces the condition X (t) = x1, which is not valid. It is
an algebraic equation relating the slope of the extremal and the slope of the target curve at the
point at which they meet. We have derived it for the case in which the right-hand end—point lies
on a given curve.

Special forms of the transversality condition
A) If x(t;) is fixed and t; is free.
A

Thus, ¢(t,)=0, and (VV) takes the simplified forrgf
f(tl)_x*(tl)&(tl): 0}

B) If t; is fixed but x(t;) is free.
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A

X
c(t)
|

e

/,

v

gl [ ———

Dividing (VV) by &(t)#0

. {f(tl)_)'(*(tl)a_f(tl)} 6f(tl)zo

e(t,) ox VT ox
-0

As ¢(t, ) goes to infinity the first term goes to zero.

Finally
of
—(ty)=0
X 1)
Example: Find the extremal of the functional
.
= [Xtdt
1T

with the initial condition x(1) = 0 and with x(T) which lies on the curve

X(T):C(T):%—B.

Solution: From the previous example it follows

Cl
X=——7+C,.
212 2
From the initial condition
C1 Cl
0= > +C, therefore C, = >

Substituting into the solution of E-L equation containing arbitrary constants
_&(i_ljzh_k

2 \t? t?
=k=const
-2k
X=—75
. 2 . -4
The target curve is C(T)=F_3, so &(T) = =

The transversality condition (VV) is
(TP -T2+ [e(T) - x(T)]- [ox(T)- T2 ]= 0
which becomes after substitution of x(T) and ¢(T)
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~ 2k, 4 2k (—4K) _s
42}

T stands for time, therefore T > 0 and k = 0 (otherwise the extremal would be x(t) = 0), so the

transversality condition gives us one root .
. . 4 .
The required extremal is [X = - 4|which meets the target curve at T =~/2 and x(T) = -2.

Isoperimetric problem
Consider the problem of finding a curve which minimizes a given functional while giving another
functional an assigned value. The name isoperimetric means the closed curves of the same
length, that is of equal perimeter. These curves maximizes the enclosed area. Such a problem is
historically oldest one.

The problem is formulated as follows. Minimize

10 = [(t,x ),

0

with the boundary conditions X(to) = Xo, X(t1) = X1 subject to the integral constraint

1(x)= tj g(t,x,x)dt =c,

t

0

where c is a given constant.

The legend about Dido: Legendary daughter of a king of Tyre. She founded Carthage and
became its queen.

Theorem: In order that x = x (t) be solution of the isoperimetric problem is necessary that, for a

certain constant A, x = X (t) is the extremal of the augmented functional
ty

J.[f (t,x, %)+ 1 g(t, x,%)]dt.

to
Proof (rather tricky): We will take admissible curves to be C? class, and the weak variation of
the form

&x = x(t)-x"(t)=es(t)
where ¢ is a small number, therefore

x(t)=x"(t) + £ o(t), o(ty) = o(t,) = 0.

Varied curves pass through the end-points.
We rewrite o(t) in the form ss(t) = an(t)+BE(t), where a, B are constant and n(t), &(t) vanish at

the end-points. The functions n(t) and ¢(t) are arbitrary and independent. There is no such
constant k that n(t) = k (t) for all t.
The increment of constraint is

Al = T[g(t,x* +e5,X +e5)—g(t,x", X Jdt=c—c =0.

to

We expand in Taylor series around x(t)

10
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I a—g an+pg)+ (om+BC)

by parts +
endconditons

jom BC {ax ;It(agﬂdt—

L(9)-
linear operator

L2t -5( 2

ox dt\ ox

Integrating by parts gives

Let L(h) denote the linear operator

so that we have

]om+[3§ dt:O.

#* O sincex”
isnotan
extremal of i

Since x'(t) is minimizing curve for I, 81 =0
tl

6|=j(om+sg) h@ dt=0.

ty #0since
(an+pe)
is dependent

The above conditions should be satisfied simultaneously. The conditions may be regarded as an
algebraic equations relative to o and B. Eliminating o and 3 between the above equations gives.

tl
jL (f )ndit jL(f )t
= — A = const.
i g)r]dt j L(g)dt fATjESQnZEﬁC

t
t functions of C?
0 class

Since n(t) and &(t) are independent functions of C? class this can only be true if both sides are
equal to constant -, say. Hence x (t) must be such that

b
JL(F+2g)ndt=0 forall admissible n(t).

to —0sincen(t)
isarbitrary

Then the necessary condition of optimality is

o df o .
—( +xg)—a{&(f+kg)}:o on x = x (t).

Constant A is termed Lagrange multiplier.
Algorithm:

4
1. Construct the functional '[ (f +21g)dt.

to

11
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2. For this functional proceed Euler-Lagrange equation.
3. Find the solution of this equation containing constants C; and C..
4. Two constants Cy, C, and the multiplier A obtain employing the end conditions and the

Isoperimetric constraint | = c.
Example: Find the extremal
1
| = [%*dt
0
with the boundary conditions: x(0) = 2, x(1) = 4, and isoperimetric constraint
1
I = [xdt=1.
0
Solution: The augmented functional takes the form
1
[ ()‘(2 +A x)dt
0 f(t,x,%)
and Euler-Lagrange equation a_ i(i] =0, the form
ox dt{ox
d
L——[2x]=0.
o 12%]
It has the solution
At

X=—+C,t+C,.
4 1 2

The end conditions give: C; =2; C, =2 —%.

We find A by applying the isoperimetric constraint

1
I{&t2+(2—&jt+2}dt=l.
)14 4

This gives A = 48. The required extremal is the curve
X =12 t*— 10t + 2.

The optimal control problem

The state of the system at time t is described by a vector x(t) in n—dimensional Euclidean space
X. This space is called the state space. The behaviour of the system (the state of the system) is
represented by the point in this abstract space, for a given instant of time t. As the system evolves
in time X trace out a continuous path in its state space. The control we model as an r—dimensional
vector function of time, u. The components of u are allowed to be piecewise continuous. The
values we can take are bounded, so that at any time t, ue U, it lies in some bounded region U of
the control space. The control such that ue U is called admissible.

12
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Example: Forr=2, u= \_ul(t), uz(t)jT , We impose the restriction |ui| <1,i=12.The
admissible control belongs to the unit square in the plane.

U,

1

\ 2

-1

Example: The piecewise continuous function has a finite number of discontinuity of the first
kind.
Ay

~ N

\_|

|
-1
Behaviour of the system is described by a set of n ordinary differential equations
X, =f,(x,u), i=1,...n

or in vector form

x =f(x,u). (1)
These are the state equations. We a assume that the function f; are defined, continuous and
continuously differentiable with respect to x =| x,,...,x, |" forall x € X and for all admissible

controls u=|u,...u, [".
The state equations should be supplemented by the boundary conditions
x(t) = x° and X(t1) = x*. (2)
The state vector x(t) is continuous even though the control is piecewise continuous.
The state equations

x =f(x,u,t)
may be transformed to the equations of the form (1) substituting
Xn+1 = t1
and adding the differential equation
dXn+1 :1.
dt

We wish control the system from x° at t to x* at t = t; in such a way that the
performance index (cost functional)
tl
I=[fo(xu)dt — MIN

t

0

is minimized.

13
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X final mainfold

-

-

————”

X

The final time t; may be specified or unspecified. We assume that the optimal control u’(t) exists.

Proof of Pontryagin’s maximum principle (1956)
Additional assumptions:

1. the control is unbounded , i.e. U is the whole control space,
2. the dimension of the state space is 2, n =2, i.e. x=|x;,X, ],
3. the dimension of the control spaceis1,r=1,i.e.u=u.

Now
{Xl = f1 (%, %, )
%y =f5(X1,X5,U)
Let u’(t) be an optimal control and x (t) the corresponding optimal path. Consider the perturbed

control and u = u” + du(t) and corresponding perturbed state vector: X; = X; + 8X1; X2 = Xz + 8Xo.
The end conditions are fixed

xit) =x',  i=1,2
The perturbed values of x;* at the time instant t; + 8t (time t; is not fixed) are
Xi (tp +8t) + dxi(ty + ) = x;*,  i=1,2 (4)

Expanding in Taylor series and saving only the first-order effects, we deduce that
X?(t1)+ X:(tl)St + 8[Xi (t1)+ X; (tl)St] = xi1

small quantities

therefore
&x,(t,)+ % (t,) 8t = 0. (5)
If we now use the right-hand sides of the state equations we obtain
&% (t,) = i (t,) 8t} (6)

Remark: We denote

fi(t)=f, (XI(t) X5 (t), U*(t))
that is considered on the optimal path. We adopt the same convention for of; /0x;and of; /ou .
The consequent change Al in | is

14
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t]‘sft (x1+8x1,x2+5X2yU +8u)dt—]'f (Xl,xz, )dt;

t, t

0

% of of
tj{axj 8, + axz 8X, + a—Jéu}dt +F,(t; )3t +0(o).

(7

=31=0, this is the necessarycondition of optimality
The variations: 3X;, X, 6u are not independent. They are linked by the state equations. We need

to introduce two Lagrange multipliers ¥';(t) and ¥,(t) which to be time—dependent.
We consider the pair of integrals

4
@, = [ W,(t)(x, — ,(x,, x,,u))dt =0, i=1,2. 8)
to =0, sinceitis

thestate equation

Now we calculate the first variation of ®;, d®;=0. We consider only the second term, because the
first one is zero.

o of, of. of. d
B = [P (1)) - = 6x, — —8x, ——Ldu+—(8x,)\dt =0. 9
-] O Sox - Sow, - Do o) o)
Now

t 4 L
J“I’i(t)%(éixi)dt = [ (0o, - [boxdt=f,(6 )W, (t)st- [ o dt - (10)
t by parts to t

since oxi(tp)=0 and ox;(t1)=-fi(t1)dt from equation (6).
Now, we use equation (10) in equation (9)

F of of of,
CDi:—I‘Pi(t {ax'lﬁxl+ax—28x 2+ SU}dt—f‘PSth fi(t,)¥w(t,)st=0. (11

The condltlon that 51=0 can now be reglaced by the condltlon that

On substituting for 81 equation (7), and for d®, equation (11), rearranging terms we obtain

t t
Jox, o, —y, ol ~y, or, — W, (dt+ [, i—\ylﬁ—fl—\{'z@—% dt +
0X, OX, 0X, d OX, OX, OX,
(13)

; jm{f}f_u_\y %_T T fat (1) 01l ot—0
~H(t;)

_H
aou

This can be written more compactly if we introduce the Hamiltonian

A
H=—F,(x,, X, u)+ ¥, f,(x;,X,,u)+ ¥, f,(X,, X,,u)|. (14)
Then equation (13) takes the form

15



R.Maronski: Analytical mechanics

ty ty ty
[ox, My dt+ [3x, My, dt+j5u@dt—H(tl) 8t =0. (15)
t 2 t X, t _a}i, —or =0

=0
=0 =0

For admissible variations {du, 6x1, 8x»} only one variation is independent. Two of them are

dependent via the state equations (1). The multipliers W; and V', are at our disposal. We choose
them to satisfy equations

- H .
‘Pi:—a—, i=1, 2. (16)

OX;
These equations are termed the adjoint equations (co-state equations). For fixed time t;, the
variation &t = 0. For free time t; the Hamiltonian H(t;) = 0.

Formulation of the Pontryagin maximum principle

Let u*(t) be an admissible control with corresponding path x™ = \_XI X;JT that transfers the
system from x° at time t = t, to x*at some unspecified time t;. Then in order that u” and X be
optimal (that is minimize 1) it is necessary that there exist a non-trivial vector ¥ =| ¥,,'¥;, ', JT
satisfying adjoint equations (16) and a scalar function
H(P, x, u) = W,f, (X, u)+ ¥,f, (x, u)+ P,f,(x, u)

such that .

(1) for eyer*yt*in to <t<ty, H attains its maximlim with respect to u at u = u (t),

(i) H(‘I: X ,u) =0and ¥, <0 at t=t;, where ¥ (t) is the solution of the system (16) for

u=u (t).

Furthermore it cg% be shown that H(¥"(t), X (t), u'(t)) = constant, so that H=0 and (<0 at each
point on an optimal trajectory.

Example:

©O

The skier should cover the given distance from A to B in minimal time. At the point B his velocity
Vg is given, and it is lower than the maximal one. Below the point B it is difficult segment of the
slope. The velocity at the point A is also given, va. The skier uses his aerodynamic drag for
braking changing his position (from dropped to upright position). Find the optimal solution of the
formulated problem.

Equations of motion

m(;—\t/:—D—T+mgsinoc, drag D:%pSCXv2
?j_)t( =V frictional force T =puN =pmgcosa .

Substituting

16
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v _ —EBSCXVZ MY gog o 4 IS
dt 2m m m
dx

=V

i
We change the independent variable: from t to x.
dv_dv dx_ —EBSCXVZ +g(sina—pcosa)
dt  dx dt 2m

=v

dv 1 sin o — n.cos
av _ ——£SCXV n g( o—Hu Oﬂ), a=constant,  Umin< U < Umax-
dx 2m v
=u —control a
variable v
Finally
dv a :
— =—Uuv+— - state equation,
dx \

f

1

v — state variable

X — independent variable

u — control variable.

Boundary conditions: v(Xo) = Vo, V(X1) = V1, Where Xq, X; are given.
Final time t; is minimized

!
tlzjvdx = MIN.

Xo

0

The Hamiltonian H=-f,+¥f = —%+‘P(— uv+%) :

The adjoint equation (jj—ql = _H = _1 + ‘P(u +i) :
X

ov v?2 v2

2—H = (;—H =—Yv = 0. The function ¥(t) =0 is not possible because for such function the adjoint
u u
equation cannot be satisfied.
The Hamiltonian takes the maximal value
u=u_ if ¥>0

H—> MAX  for mne
u=u if ¥<O0.

max

The control u is bang-bang type.

17
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switching point

switching point
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