LECTURE 6
AERODYNAMICS OF A WING
FUNDAMENTALS OF THE LIFTING-LINE
THEORY




The Biot-Savart Law

- 1 The velocity induced by the singular vortex line with the
circulation /7 can be determined by means of the Biot-
Savart formula

g 1 Special case — iInduction of the
straight vortex line:

di=dfe, , X—¢=(x-S)e, +Yye,
dix(x-¢&)=ydée, xe, = ydée,
x—&f =[(x=&?+y? ]




From the Biot-Savart formula one gets
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Case 1 — induction of the infinite vortex line (equivalent to the 2D point vortex!)
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Case 2 — induction of the semi-infinite vortex line segment & €[0,x)
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Flow past a finite-span wing — physical properties
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Lifting-line model of a finite-span wing

Flow past a wing Is modeled by the superposition of the uniform free stream and the
velocity induced by a plane vortex sheet “pretending” to be the cortex wave behind the

wing. . . .
£ infinitesimal
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y vortex
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vortex sheet

y=-b/2

The vortex sheet behind the wing is “woven” from continuum of infinitesimally weak
horseshoe vortices. These vortices are “attached” to the lifting line leading to a continuous

distribution of circulation along the wing span.




The vortex sheet induces vorticity all around. The idea is to calculate the calculate the
velocity induced by this sheet on its front edge, i.e., along the lifting line. Next, it is
assumed that each infinitely thin slice of the wing generates the (differential)
contribution to the total aerodynamic force as it were a two-dimensional airfoll.
Each slice “senses” its individual direction of “free stream’, which results from the real
free stream vector V_ and the vertical (normal to the vortex sheet) velocity induces at

the lifting line in the point corresponding to the position of the wing slice.

According to the Biot-Savart formula, the infinitesimal contribution to the velocity induces
along the lifting line at the point (0, y,,0) is

_ I7'(y)dy

dw =
A (Yy—Y)

The total velocity induces at this point is obtained by integration

’ Az 5, Yo=Y




Due to (generally) non-uniform distribution of the induced velocity along the wing
span, the effective angle of attack has an individual value of each wing section — see
figure below.
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The direction of flow “sensed” by the
wing section at y=Yy, Is rotated

clockwise by the induces angle

;i (Y,) =atan[-w(y,)/V..]

For small angles ...

o;(y )z—W(yo) 1 °¢ I'(y)dy
170 V, 4nV, ., yo-y

Clearly, an effective angle o« = a4 (V,)-




For small angles one can assume that the local lift coefficient changes linearly with the
(local) angle. Hence

C|_ (yo) — aoo[aeff (yo) — ao(yo)]

Here, a, denotes the slope of the lift characteristics for the wing section, ¢, Iis the
angle of attack corresponding to the zero lift. Note that a_ =2x if the thin-airfoil
theory is used. Note also that — in general — the angle ¢, = &, (Y,).

Next, we assume that the spanwise density of the lift force developed on the wing can
be computed from the Kutta-Joukovski formula, namely

I—’(yo) = %poovogCL(yO)C(yO) = poovoor(yO)
where C(Y,) is local chord of the wing section

_20°(Y,)
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Hence, the local lift coefficient is C(Yo)




Assuming that &, = 27, the local effective angle of attack is

I°(Y,)
ﬂVwC(YO)

Oyt (Vo) = +,(Yp)

Finally, the sum of the two local angles: o (Y,) and «;(Y,) is equal to the geometric

angle of attack «. If the wing has geometric twist, this angle also depends of the
spanwise location, i.e., o =a(Y,).

Hence, we have obtained the following integro-differential equation for the
spanwise distribution of the circulation
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One this equation is solved, then the spanwise distribution of the circulation is known.
The lift force developed on the wing can be calculated as follows

b/2 b/2
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The (global) lift coefficient is C, = TSVS J/ 2F(y)dy

The local contribution to the drag force is

The induced drag force is equal

b/2 b/2

D= | L(a(ydy=pN, | I(y)ei(y)dy
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Thus, the coefficient of the induced drag is equal
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Important case - elliptical distribution of the circulation
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Let us apply the following change of coordinates

y=3bcos¢d , dy=—3bsingdd
Thus

Iy cosé I
g,)=——0 do=-L0
W() Zﬂb-(‘)‘COSQ—COSHO 2b

Conclusion: for the elliptical distribution of the circulation, the downwash
velocity is constant!
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The induced angle is a=——"

The lift force

b/2 T
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Thus, the maximal circulation is Fo = L
o, V. b




On the other hand L=3,p,V2SC,

_V,SC,
b

Hence e 0

and the induced angle is a; = 2&‘} = ZVZ';ISDCL 2b1\/ = SE;
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We define the aspect ratio of the wing

Then, the alternative form of the formula for the induced angle for the elliptical
distribution of vorticity is

C




The coefficient of the induced drag is calculated as follows

20. °F 20 ra. b 7b C, 2V.SC
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Thus, we have obtained the formula CD —_—L
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Consider the wing with no geometrical or aerodynamic twist.
Then, both o and ¢, are constant along the wing span. For the elliptical load

distribution the angle ¢; is also constant, hence the effective angle of attack « and

the lift coefficient C, = aoo(ozefr —ao) are also constant along the wing span.

L'(y)

Cqu

Since L'(y)=c,q,c(y) then c(y)=




Conclusion: the spanwise variation of the wing chord follows the variation of the
aerodynamic load. Hence, the planform of such wing is also elliptical!
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General lift distribution

Again, we use the transformation y=-3bcosd , 6<|0,r]

The elliptic distribution is expressed nowas /1 (0) = Fox/l—COSZ 0=1,sIin6

Generalization: r'@)=2v,b> A sinng
n=1
We will need the derivative ... ddI; = Ccllg (gg =2V_Db %—5 nZ:: nA, cosnéd

The central equation of the lifting-line theory takes the form

cosné
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cosnd 40— 7 sinng,
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The Glauert integral appears again

0

Hence, the main equation is transformed to the algebraic form

2h & . 1 & sinn@,
a(0)—a.(6,) = sinnd.+— > n 0
(%) =2 (6%) ﬂC(HO)nZ;A] 0 ﬂnzll A sin 4,

In order to find approximate solution, we first truncate the infinite series ...

o N _ 1 sinng
al0)—a. (6.)= siINng, +— > n :
( o) L—O( o) C QO)nZ:;A" 0 ﬂnzzj; Ah Sin(90

... and make use of the collocation method, i.e., require fulfillment of this equation at
N different point 7, €[0, 7], m=1,..,N .

This way, the linear algebraic system is obtained for the unknown coefficients
{A. A, ..., A}, which can be solved, e.g., by the Gauss Elimination Method.




Once 77(8) is known, one can calculate all aerodynamic characteristics of the wing.
We have

2b% &
I (y)dy = ZAJ sinndsin0d 9

/2 , n=1

We use the orthogonality of the Fourier modes I:Sin n@sin 8d o ={ 0 N1

and obtain the formula

b2

We see that only the first coefficient of the Fourier series is needed to calculate the
lift force coefficient!




The calculation of the induced drag 1s more complicated ...
We have

b/2
2
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We need expression for the induced angle, namely
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Hence, the formula for the C, can be transformed as follows
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Again, using the orthogonality property of the Fourier modes

0 , k#m

jsin k@sin anH:{l
) 57T K=m

the formula for the induced drag coefficient simplifies to the form

C, 2b

: Znﬁhz ﬂAZnAf 7A(A +ZnA§) 72'/1/61{1+ZHA12:|

We can write shortly

CE _C
Co, =L (1+8) ="k

2
where 0 = Zn 2‘ and e = (1+5)* (Oswald aerodynamic efficiency parameter).

Note that o >0, hence C <C, (optimality!)

Helliptic wing I lany wing




The most famous airplane with the elliptical wing:

Trapezoidal wings are easier to construct and to build. Theoretically, they are nearly as
good as elliptic ones if only the taper ratio (i.e., ¢;, /C,) IS near the optimal value. In

the wide range of aspect ratios, (1 =4-+10), the smallest values of 6 are achieved
when the taper ratio is close to 0.3. Other factors, like the stall pattern also matters!
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Reduction of the lift slope

The finite span not only leads to the appearance of the induced drag — it also changes
(reduces) the slope of the “lift vs angle of attack™ characteristic.

Denote:
a_ = % - slope of the lift characteristic for the 2D wing section (equivalent to A =)
(04
dC, : .. :
a, = ryal slope of the lift characteristic for the 3D wing.
04

| Due to appearance of the
Induced angle, the 3D wing
achieves the same value of
the lift coefficient at larger

Q=0 | geometric angle of attack —
/ oL =00, 4 o | see figure.
L —00 A<oo | We have ...

C, =a,(a—¢;)+const




Hence, for the elliptic wing C =a.(a— %) + const

dC, .  a,
Thos da M 1ra,
For other planforms ... a,= A

4 1+ (a, /zA) A+ 1)

Correction factor z typically ranges from 0.05 to 0.25. The value of this factor can be
expressed by the coefficients {A, A, ..., Ay}




