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The Biot-Savart Law 

 

The velocity induced by the singular vortex line with the 

circulation   can be determined by means of the Biot-

Savart formula 
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Special case – induction of the 

straight vortex line: 
 

, ( )x x yd d x y     l e x ξ e e   

( ) x x zd yd yd     l x ξ e e e   
3/23 2 2( )x y     x ξ   

 



AERODYNAMICS  I 

From the Biot-Savart formula one gets 
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Case 1 – induction of the infinite vortex line (equivalent to the 2D point vortex!) 
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Case 2 – induction of the semi-infinite vortex line segment [0, )    
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Flow past a finite-span wing – physical properties 
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Lifting-line model of a finite-span wing 
 

Flow past a wing is modeled by the superposition of the uniform free stream and the 

velocity induced by a plane vortex sheet “pretending” to be the cortex wave behind the 

wing. 

 

 

 

 

 

 

 

 

 

 
 

The vortex sheet behind the wing is “woven” from continuum of infinitesimally weak 

horseshoe vortices. These vortices are “attached” to the lifting line leading to a continuous 

distribution of circulation along the wing span.  
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The vortex sheet induces vorticity all around. The idea is to calculate the calculate the 

velocity induced by this sheet on its front edge, i.e., along the lifting line. Next, it is 

assumed that each infinitely thin slice of the wing generates the (differential) 

contribution to the total aerodynamic force as it were a two-dimensional airfoil. 

Each slice “senses” its individual direction of “free stream”, which results from the real 

free stream vector V  and the vertical (normal to the vortex sheet) velocity induces at 

the lifting line in the point corresponding to the position of the wing slice. 

 

According to the Biot-Savart formula, the infinitesimal contribution to the velocity induces 

along the lifting line at the point 0(0, ,0)y  is  
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The total velocity induces at this point is obtained by integration 
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Due to (generally) non-uniform distribution of the induced velocity along the wing 

span, the effective angle of attack has an individual value of each wing section – see 

figure below. 

 

 

The direction of flow “sensed” by the 

wing section at 0y y  is rotated 

clockwise by the induces angle 
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For small angles … 
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Clearly, an effective angle  0( )eff eff y  .  
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For small angles one can assume that the local lift coefficient changes linearly with the 

(local) angle. Hence 
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Here, a  denotes the slope of the lift characteristics for the wing section, 0  is the 

angle of attack corresponding to the zero lift. Note that 2a    if the thin-airfoil 

theory is used. Note also that – in general – the angle 00 0( )y  . 

  

Next, we assume that the spanwise density of the lift force developed on the wing can 

be computed from the Kutta-Joukovski formula, namely 
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Assuming that 2a   , the local effective angle of attack is 
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Finally, the sum of the two local angles: 0( )eff y  and 0( )i y  is equal to the geometric 

angle of attack  . If the wing has geometric twist, this angle also depends of the 

spanwise location, i.e., 0( )y  .  

 

Hence, we have obtained the following integro-differential equation for the 

spanwise distribution of the circulation 
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One this equation is solved, then the spanwise distribution of the circulation is known. 

The lift force developed on the wing can be calculated as follows 
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The (global) lift coefficient is           
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The local contribution to the drag force is 
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The induced drag force is equal 
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Thus, the coefficient of the induced drag is equal 
 

/2

/2

2
( ) ( )

i

b

i
iD

b

D
C y y dy

q S V S
 

  

    

 

Important case -  elliptical distribution of the circulation 
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Let us apply the following change of coordinates 
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Conclusion: for the elliptical distribution of the circulation, the downwash 

velocity is constant! 
 

The induced angle is                      0
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Thus, the maximal circulation is                0
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On the other hand                                    
21

2 LL V SC    

 

Hence                                                        0

2 LV SC

b



  

 

and  the induced angle is          0
2

2 1

2 2
L L

i

V SC SC

bV b bV b




 


 

    

 

We define the aspect ratio of the wing               
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Then, the alternative form of the formula for the induced angle for the elliptical 

distribution of vorticity is 
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The coefficient of the induced drag is calculated as follows 
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Thus, we have obtained the formula                    
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Consider the wing with no geometrical or aerodynamic twist.  

Then, both   and 0  are constant along the wing span. For the elliptical load 

distribution the angle i  is also constant, hence the effective angle of attack eff  and 

the lift coefficient 
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Conclusion: the spanwise variation of the wing chord follows the variation of the 

aerodynamic load. Hence, the planform of such wing is also elliptical! 
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General lift distribution 

 

Again, we use the transformation                       1
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The elliptic distribution is expressed now as     
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The central equation of the lifting-line theory takes the form  
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The Glauert integral appears again             0
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Hence, the main equation is transformed to the algebraic form 
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In order to find approximate solution, we first truncate the infinite series … 
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… and make use of the collocation method, i.e., require fulfillment of this equation at 

N different point [0, ], 1,..,m m N    .  
 

This way, the linear algebraic system is obtained for the unknown coefficients 

1 2{ , ,..., }NA A A , which can be solved, e.g., by the Gauss Elimination Method. 
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Once ( )   is known, one can calculate all aerodynamic characteristics of the wing. 

We have 
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We use the orthogonality of the Fourier modes    
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We see that only the first coefficient of the Fourier series is needed to calculate the 

lift force coefficient! 
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The calculation of the induced drag is more complicated … 

We have 
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We need expression for the induced angle, namely 
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Hence, the formula for the 
iDC  can be transformed as follows 
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Again, using the orthogonality property of the Fourier modes 
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the formula for the induced drag coefficient simplifies to the form 
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We can write shortly 
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The most famous airplane with the elliptical wing: 

 

 

Trapezoidal wings are easier to construct and to build. Theoretically, they are nearly as 

good as elliptic ones if only the taper ratio (i.e., /tip rootc c ) is near the optimal value. In 

the wide range of aspect ratios, ( 4 10   ), the smallest values of   are achieved 

when the taper ratio is close to 0.3. Other factors, like the stall pattern also matters!  
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LEFT: Spanwise lift distribution for trapezoidal wing with different taper ratios. 

RIGHT: Stall patterns for different planforms. 
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Reduction of the lift slope 
  

The finite span not only leads to the appearance of the induced drag – it also changes 

(reduces) the slope of the “lift vs angle of attack” characteristic. 

Denote: 

Ldc
a

d
   - slope of the lift characteristic for the 2D wing section (equivalent to  )  

LdC
a

d



  - slope of the lift characteristic for the 3D wing. 

 

Due to appearance of the 

induced angle, the 3D wing 

achieves the same value of 

the lift coefficient at larger 

geometric angle of attack – 

see figure. 

We have … 
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Correction  factor   typically ranges from 0.05 to 0.25. The value of this factor can be 

expressed by the coefficients 1 2{ , ,..., }NA A A  

 

 


