
 

 

 

LECTURE 13 

 

 

 

 

 



DYNAMICS  OF SMALL (ACOUSTIC) DISTURBANCES 

Consider nonstationary motion in 1D. We have 

 

 mass conservation equation  t x xu u 0         

 Euler equation           t x xu u u p       

Assume that the flow is smooth. Then, the energy equation can be replaced by the 

isentropic condition S const . 

 

Consider the First Principle of Thermodynamics written in the following form 
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The differential of (mass-specific) entropy can be expressed as follows  
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Using the Clapeyron equation can write 
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Since the flow is isentropic, we have dS 0 , hence   
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We see that the flow is barotropic and the derivative of the pressure as the function of 

density is always nonnegative function. We can introduce the quantity a defined as 

 a RT  
 

Then         
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Note that the physical unit of a  is [m/s], so a  seems to be the velocity of „something”. But 

what is this “something”?. To figure it out, consider the motion of weak (or small) 

disturbances in the motionless gas. 

 

The fields of density, pressure and velocity can be written as the sums of undisturbed 

(background) values and disturbances denoted by the “primed” symbols. 
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Since disturbances are assumed small, the nonlinear (product) terms can be neglected. In 

effect, we get linearized equations as follows 
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The key point is to express the pressure disturbances by means of the density disturbances (it 

is possible as the flow is barotropic). To this end we write 
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Thus     
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The next step is to differentiate the linearized mass conservation equation with respect to  

time and  the equation of motion with respect to the spatial variable x. Then we subtract the 

second equation from the first one. The results reads 
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Similar procedure (provide details!) leads to the formally identical PDE for the velocity 

disturbances. 
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We see that the spatio-temporal dynamics of the density and velocity disturbances (also 

pressure - show!) is governed by the linear wave equation.  

 

We know from the analysis that the general solution the wave equation (for the unbounded 

domain, i.e. the whole line) can be written in the following form 
 

( , ) ( ) ( )1 0 2 0t x F x a t F x a t    
 

 



The functions F1 and F2 are arbitrary. The physical interpretation is straightforward: the 

solution (in 1D) is the superposition of two (arbitrary shaped) wave forms, moving with the 

constant velocity 0a  in the positive and negative directions of the x-axis, respectively.  

 

In general 3D case, the linear wave equation takes the form of 
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We see that small disturbances travel through the gas in the form of linear waves (of 

small amplitudes). The speed of the wave is equal 

 

0 0a RT
 

 

where T0 is the background temperature. Such small (linear) disturbances are called acoustic 

ones and they represent the sound waves. The velocity of this waves is called the speed of 

sound. 

 

 

 

 

 

 



Note: 

 

 in general situation, the speed of sound is different at different points in space (and – 

possibly – at different time instants),   

 the local speed of the gas can be either smaller (subsonic conditions), or equal (sonic or 

critical conditions) or larger (supersonic conditions) that the local speed of sound.  

 The motion of ideal gas need not to be spatially continuous! Large disturbances have 

nonlinear dynamics and they can beveloped into strong discontinuities called the shock 

waves. The flow across the shock wave is not isentropic! 

 

 

 

 

 

  



 

ENERGY INTEGRAL. ISENTROPIC RELATIONS 

The energy integral can be written as  
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The mass-specific enthalpy can be expressed in several forms 
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Mach number:   
V

M
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Stagnation parameter: the parameter’s value at such point where 0  ;  e.g. 0T  

 

Critical parameter: the parameter’s value at such point where ( )a M 1   ; e.g. T   

 

 

 

 



 

Equivalent forms of the energy equation           
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Maximal velocity  (T 0 ) 
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If the flow is also isentropic, we have  /p const   and p RT . Then 
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