Prediction of transitional boundary layer flows with γ -Re_{θ} model

Sławomir Kubacki

slawomir.kubacki@meil.pw.edu.pl

Instytut Techniki Lotniczej i Mechaniki Stosowanej, Politechnika Warszawska

listopad, 2017

Contents

- 1. Turbulent spots and intermittent signals
- 2. Narashimha low and a transport equation for intermittency
- 3. The γ -Re_{θ} model
 - Transition modeling in attached boundary layer
 - Transition modeling in separated boundary layer
 - Grid requirements and numerics
 - Results for wake-induced tranistion
- 4. Conclusions

Intermittency factor γ

The *intermittency* γ is the fraction of time that the flow is turbulent in a position in the boundary layer during the breakdown phase. It is zero in laminar flow and unity in fully turbulent flow.

$$\gamma(\mathbf{x}, \mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{I}(\mathbf{x}, \mathbf{y}, \mathbf{t}) \qquad \mathbf{I}(\mathbf{x}, \mathbf{y}, \mathbf{t}) = \begin{cases} 1: & \text{turbulent} \\ 0: & \text{non-turbulent} \end{cases}$$
$$\gamma = 0 \qquad \qquad 0 < \gamma < 1 \qquad \qquad \gamma = 1 \end{cases}$$

Fig. 1. DNS of transitional boundary layer flow. Visualisation of turbulent spot by means of vorticity magnitude.

Fig. Time signals in turbulent flow

<u>Narasimha low</u>

$$\gamma(x) = 1. - \exp\left[-\frac{N\sigma}{U}(x - x_t)^2\right]$$
(1)

Dimensionless parameters:

- **D** N is the spot production rate per unit distance in spanwise direction
- $\hfill \sigma$ is the function which depends on the planform shape, the propagation velocities and the spreading angle

Other quantities:

- **u** U is velocity at edge of boundary layer
- x is the streamwise distance
- x_t is the transition onset point

See Gostelow et al. and Solomon et al. for definitions of N and σ

Defining the spatial growth parameter, $\beta_{\gamma}\left[1/m\right]$

$$\beta_{\gamma} = \sqrt{N\sigma/U}$$
 or $\beta_{\gamma} = \sqrt{\hat{N}\sigma}\frac{U}{v}$ (2)

The Narashimha formula (1) reads

$$\gamma(\mathbf{x}) = 1. - \exp\left[-\beta_{\gamma}^{2} \left(\mathbf{x} - \mathbf{x}_{t}\right)^{2}\right]$$
(3)

or

$$1 - \gamma(\mathbf{x}) = \exp\left[-\beta_{\gamma}^{2} \left(\mathbf{x} - \mathbf{x}_{t}\right)^{2}\right]$$
(4)

From (3) follows:

$$\frac{\mathrm{d}\gamma}{\mathrm{d}x} = \exp\left[-\beta_{\gamma}^{2} \left(x - x_{t}\right)^{2}\right] 2\beta_{\gamma}^{2} \left(x - x_{t}\right).$$
(5)

With (4), this is:

$$\frac{d\gamma}{dx} = 2\beta_{\gamma}^2 (1-\gamma)(x-x_t).$$
(6)

From (4), we also obtain:

$$\sqrt{-\ln(1-\gamma)} = \beta_{\gamma}(x - x_t). \tag{7}$$

Thus, (6) may also be written as

$$\frac{d\gamma}{dx} = 2\beta_{\gamma}(1-\gamma)\sqrt{-\ln(1-\gamma)}.$$
(8)

Typically, the linear law (7) is fitted to the experimental results. By this fitting, the onset position (x_t) and growth rate (β_{γ}) are determined.

Maximum production is inside the laminar boundary layer

Disadvantages:

- **u** The transition onset x_t has to be known from experiments
- The evolution low (8) only applies for initial laminar flow (no possibility to enforce the laminar boundary layer starting from the fully turbulent flow).

More general a *transport equation of intermittency* can be formulated:

$$\vec{v}.\nabla\gamma = 2\sqrt{\hat{N}\sigma} \frac{U}{v} u(1-\gamma)\sqrt{-\ln(1-\gamma)}$$
(9)

 $\vec{\mathbf{v}}$ is the local velocity vector,

U is the magnitude of the velocity at the edge of the boundary layer u is the magnitude of the local velocity.

A further generalisation is

$$\frac{D(\rho\gamma)}{Dt} = 2\sqrt{\hat{N}\sigma}\rho(\frac{U}{\nu}u)(1-\gamma)\sqrt{-\ln(1-\gamma)}F_{\text{onset}} + \frac{\partial}{\partial x_j}\left[\left(\mu + \frac{\mu_t}{\sigma_\gamma}\right)\frac{\partial\gamma}{\partial x_j}\right]$$
(10)

 \Box F_{onset} function switches from zero to unity at transition onset x_t.

□ The diffusion term is added to allow a profile across the boundary layer.

Some simplifications:
$$\frac{D(\rho\gamma)}{Dt} = 2\sqrt{\hat{N}\sigma}\rho(\frac{U}{\nu}u)(1-\gamma)\sqrt{-\ln(1-\gamma)}F_{\text{onset}} + \frac{\partial}{\partial x_j}\left[\left(\mu + \frac{\mu_t}{\sigma_{\gamma}}\right)\frac{\partial\gamma}{\partial x_j}\right]$$

- □ Term $\sqrt{-\ln(1-\gamma)}$ might be replaced by $\sqrt{\gamma}$ (approximate proportionality in the range: 0< γ <0.35)
- □ Term $\sqrt{-\ln(1-\gamma)}$ might also be replaced by γ (approximate proportionality in the range: 0.35< γ <0.95)
- **□** Factor $(\frac{uU}{v})$ has dimension [1/s]. This might be approximated by strain-rate S or rotation rate Ω magnitude. The latter formulation is Galilean invariant.

Thus, eq. (10) might be formulated by:

$$\frac{D(\rho\gamma)}{Dt} = F_{lenght}\rho S(1-\gamma)\sqrt{\gamma}F_{onset} + Diff(\gamma)$$

(11)

 F_{length} is a dimensionless function expressing the growth rate of the intermittency (similar as $\sqrt{\hat{N}\sigma}$ term).

The local correlation-based γ -Re_{θ} model

(Menter, Langtry et al., 2006, Langtry and Menter, 2009)

$$\frac{D(\rho\gamma)}{Dt} = P_{\gamma} - E_{\gamma} + \frac{\partial}{\partial x_{j}} \left[\left(\mu + \frac{\mu_{t}}{\sigma_{\gamma}} \right) \frac{\partial\gamma}{\partial x_{j}} \right]$$
(12)

Production term

$$P_{\gamma} = c_{a1} F_{length} \rho S (1 - c_{e1} \gamma) \sqrt{\gamma F_{onset}}$$
(13)

Maximum production inside the B.L. Transition onset is activated with F_{onset} term.

Destruction term

$$E_{\gamma} = c_{a2} F_{turb} \rho \Omega (c_{e2} \gamma - 1) \gamma$$
(14)

Used to enforce the laminar solution prior to transition.

Coupling with the SST turbulence model

$$\frac{\overline{D(\rho\gamma)}}{Dt} = P_{\gamma} - E_{\gamma} + \frac{\partial}{\partial x_{j}} \left[\left(\mu + \frac{\mu_{t}}{\sigma_{\gamma}} \right) \frac{\partial\gamma}{\partial x_{j}} \right]$$
$$\frac{D(\rho \overline{Re}_{\theta t})}{Dt} = P_{\theta t} + \frac{\partial}{\partial x_{j}} \left[\sigma_{\theta t} \left(\mu + \mu_{t} \right) \frac{\partial(\overline{Re}_{\theta t})}{\partial x_{j}} \right]$$

(15)

$$\frac{Dk}{Dt} = \frac{P_{k}}{D_{k}} - D_{k}^{*} + \frac{\partial}{\partial x_{j}} \left[(v + \frac{v_{t}}{\sigma_{\kappa}}) \frac{\partial k}{\partial x_{j}} \right]$$
(16)
$$\frac{D\omega}{Dt} = \alpha P_{\omega} - \beta \omega^{2} + \frac{\partial}{\partial x_{j}} \left[(v + \frac{v_{t}}{\sigma_{\omega}}) \frac{\partial \omega}{\partial x_{j}} \right] + \frac{2\sigma_{\omega 2}}{\omega} \frac{\partial k}{\partial x_{j}} \frac{\partial \omega}{\partial x_{j}}$$
(17)
$$P_{k} = \gamma_{\text{eff}} v_{t} S^{2} \qquad \gamma_{\text{eff}} = \max(\gamma, \gamma_{\text{sep}}) \qquad v_{t} = \frac{a_{1}k}{\max(a_{1}\omega, SF_{2})} \qquad S^{2} = 2S_{ij}S_{ij}$$

Transition in attached boundary layer

Example: Direct Correlation Based Models

Estimation of transition onset using experimental correlations for $Re_{\theta c}$. Re_{θ} calculated directly by integration of velocity profiles

Estimation of Re_{θ} in γ -Re $_{\theta}$ model

$$\operatorname{Re}_{V} = \frac{y^{2}}{v} \left| \frac{\partial U}{\partial y} \right| = \frac{y^{2}S}{v}$$

Wilcox (1994):

$$\operatorname{Re}_{\theta} \cong \frac{\operatorname{Re}_{V,\max}}{2.193}$$

Re_v approximates Re_θ
 Maximum Re_v is observed inside the boundary layer

Estimation of $\operatorname{Re}_{\theta}$ in γ -Re $_{\theta}$ model

$$\operatorname{Re}_{V} = \frac{y^{2}}{v} \left| \frac{\partial U}{\partial y} \right| = \frac{y^{2}S}{v}$$

Activate transition for

$$\frac{\mathrm{Re}_{\mathrm{V,max}}}{2.193\mathrm{Re}_{\mathrm{\theta c}}} > 1$$

 $\text{Re}_{\theta c}$ - critical value of the momentum thickness Reynolds number

In practice:

$$F_{\text{onset}} = \min[\frac{\text{Re}_{\text{V}}}{2.193\text{Re}_{\theta c}}, 2]$$

$$P_{\gamma} = c_{a1}F_{length}\rho S(1 - c_{e1}\gamma)\sqrt{\gamma F_{onset}}$$

Re_{0c} is obtained in three steps:
$$F_{onset} = min[\frac{Re_v}{2.193Re_{\theta c}}, 2]$$

<u>First step</u>: $Re_{\theta t}$ is calculated from experimental correlations outside of the boundary layer flow

$$\begin{split} & \operatorname{Re}_{\theta t} = [1173.51 - 589.428 \, \mathrm{Tu} + 0.2196 \, \mathrm{Tu}^{-2}] F(\lambda_{\theta}), & \text{for} & \operatorname{Tu} \leq 1.3 \\ & \operatorname{Re}_{\theta t} = 331.50 [\operatorname{Tu} - 0.5658]^{-0.671} F(\lambda_{\theta}) & \text{for} & \operatorname{Tu} > 1.3 \\ & F(\lambda_{\theta}) = 1 - [-12.986 \lambda_{\theta} - 123.66 \lambda_{\theta}^{2} - 405.689 \lambda_{\theta}^{3}] \exp[(\frac{\operatorname{Tu}}{1.5})^{1.5} \, \text{for} & \lambda_{\theta} \leq 0 \quad (18) \\ & F(\lambda_{\theta}) = 1 + 0.275 [1 - \exp(-35.0 \lambda_{\theta})] \exp(-\frac{\operatorname{Tu}}{0.5}) & \text{for} & \lambda_{\theta} > 0 \\ & \lambda_{\theta} = (\theta^{2} / \nu) (dU / ds) & \operatorname{Tu} = \frac{\sqrt{2k/3}}{U} \end{split}$$

Estimation of critical value of $Re_{\theta c}$ in γ -Re $_{\theta}$ model (dependence on turbulence level)

Estimation of critical value of $Re_{\theta c}$ in γ -Re $_{\theta}$ model (dependence on pressure gradient)

<u>Second step</u>: Transfer of freestream values of $\text{Re}_{\theta t}$ towards the wall

$$\frac{D(\rho \overline{Re}_{\theta t})}{Dt} = P_{\theta t} + \frac{\partial}{\partial x_{j}} \left[\sigma_{\theta t} \left(\mu + \mu_{t} \right) \frac{\partial \left(\overline{Re}_{\theta t} \right)}{\partial x_{j}} \right]$$
(19)

This operation can also be done without solving the partial differential equation (19).

• The source term $P_{\theta t}$ enforces the free-stream values of $Re_{\theta t}$ to be equal to $Re_{\theta t}$ and is set to zero in boundary layers,

• Diffusion term. The transport equation processes the value of $Re_{\theta t}$ such that $Re_{\theta t}$ inside a boundary layer is influenced by the values at the edge of the boundary layer

 \square Difficulty with imposing the inlet conditions for $Re_{\theta t}$. Now, the inlet conditions are reproduced from correlations.

<u>Second step</u>: Transfer of freestream values of $Re_{\theta t}$ towards the wall

 $\overline{Re}_{\theta t}$ very gradual change in the whole computational domain

Low $\overline{Re}_{\theta t}$ - means the flow is susceptible to transition

<u>Third step</u>: Activation of turbulence production in pseudo-laminar boundary layer

$$\operatorname{Re}_{\theta c} = f(\overline{\operatorname{Re}}_{\theta t})$$

The flow disturbances (secondary instabilities), precursor to flow transition, are initiated upstream of transition onset point

-this causes increase of modelled shear stress in pseudo-laminar boundary layer

Correlations are proposed based on numerical experiment (see Langtry and Menter, 2009):

<u>Third step</u>: Activation of turbulence production in pseudo-laminar boundary layer

Correlation $\operatorname{Re}_{\theta c} = f(\overline{\operatorname{Re}}_{\theta t})$ gives a reduction of critical value of momentum thickness Reynolds number $\operatorname{Re}_{\theta c}$ with respect to $\overline{\operatorname{Re}}_{\theta t}$ (by <u>30%)</u>

According to experimental correlations:

$$F_{\text{onset}} = \min[\frac{\text{Re}_{\text{V}}}{2.193\overline{\text{Re}}_{\theta t}}, 2]$$

Corrected formula

$$F_{\text{onset}} = \min[\frac{\text{Re}_{\text{V}}}{2.193\text{Re}_{\theta c}}, 2]$$

Coupling of γ -equation with correlations for $\text{Re}_{\theta c}$

$$\frac{D(\rho\gamma)}{Dt} = P_{\gamma} - E_{\gamma} + \frac{\partial}{\partial x_{j}} \left[\left(\mu + \frac{\mu_{t}}{\sigma_{\gamma}} \right) \frac{\partial\gamma}{\partial x_{j}} \right]$$
$$P_{\gamma} = c_{a1}F_{length}\rho S (1 - c_{e1}\gamma) \sqrt{\gamma F_{onset}}$$

$$\frac{D(\rho \overline{Re}_{\theta t})}{Dt} = P_{\theta t} + \frac{\partial}{\partial x_j} \left[\sigma_{\theta t} \left(\mu + \mu_t \right) \frac{\partial \left(\overline{Re}_{\theta t} \right)}{\partial x_j} \right]$$
$$Re_{\theta c} = f(\overline{Re}_{\theta t})$$
$$F_{onset} = min[\frac{Re_V}{2.193Re_{\theta c}}, 2]$$

Transition in separated boundary layer

Incresed production in separated boundary layer flows

$$\frac{Dk}{Dt} = \frac{P_k}{P_k} - D_k^* + \frac{\partial}{\partial x_j} \left[(\nu + \frac{\nu_t}{\sigma_\kappa}) \frac{\partial k}{\partial x_j} \right]$$
$$P_k = \gamma_{\text{eff}} \nu_t S^2 \qquad \gamma_{\text{eff}} = \max(\gamma, \gamma_{\text{sep}})$$

 In separted laminar boundary layer flow, an activation of tranistion model, typically results in delayed reattachement (provided it occurs)

• This is cured by alowing the production term to be locally twice as high as in reference fully turbulent flow

$$\gamma_{sep} = \min\left(\max\left(\frac{\text{Re}_{V}}{3.235\text{Re}_{\theta c}} - 1, 0\right)\text{Funct}_{1}, 2\right)\text{Funct}_{2}$$

Separation induced transition in γ -Re_{θ} model

Separation induced transition in $\gamma\text{-}\text{Re}_\theta$ model

Grids and numerics

Grid requirements

- Necessity to resolve the viscous sublayer: y⁺=1
- About 20-40 points inside the boundary layer
- Gradual variation of points in wall-normal direction: Ratio 1.05-1.2
- Grid-sensitivity study required

Numerical algorithms

- Transition models are developed and tuned for second-order schemes
- Use the second-order upwind scheme for discretization of convective terms in momentum equations
- Use also the second-order upwind scheme for discretization of convective terms in transport equation
- At first step the first-order upwind schemes are also acceptable in some cases for disctetization of transport equations

Results for wake-induced transition

Jet effect

Direct Correlation vs. γ -Re_{θ} model (high turbulence level, Tu=3.0%)

Direct Correlation vs. γ -Re_{θ} model (high turbulence level, Tu=3.0%)

Direct Correlation vs. γ -Re_{θ} model (low turbulence level, Tu=0.4%)

Direct Correlation vs. γ -Re_{θ} model (low turbulence level, Tu=0.4%)

Final remarks:

□ The transition models are very sensitive to inlet turbulence level and inlet turbulent length scale

- The boundary conditions for turbulence quantities have to be correctly specified
- It is recommended (if possible) to check the evolution of freestream turbulence with reference experiments/DNS/LES

□ In some cases the predictions of transition models are strongly limited by shortcomings of underlying turbulence model (insufficient turbulence production in the freestream – moving wakes)

 \Box High quality grids are required (y⁺=1)

□ Transition models are developed to improve the global flow characteristics – less accurate in capturing the local flow details (kinematic effect of impacting wake)

Final remarks:

 More standard direct methods are still reliable techniques, but require local operations