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Integral approach to the BL

In the first part of the lecture, we derived the Prandtl Equation and discussed existence and
some properties of its the self-similar solutions. Here, we consider an alternative approach

based on the usage of integral quantities.

One of the main problems is to develop “objective” measures of the BL thickness. Probably the
most basic definition is 99% BL thickness, denoted as 0,,. By definition, it is such distance

from the wall that
U(X, Y =0dy)=0.99-U,(x)

The other (more physically relevant) concept is the displacement thickness. In we consider the
BL velocity profile at a given section (X is fixed), we can define the deficit in the volumetric
flux inside the BL (as compared to ideal uniform velocity profile

i u =U,) by the following integral

AQ(X) = [[U, () —u(x, y)ldy

Then, the displacement thickness is defined by the formula




_AQ(0) _ 7| ;_u(x.y)
=G0 {1 Us () }dy

Hence, the quantity o, (X) tells us how big vertical displacement of the wall would cause

equivalent flus deficit in an ideal fluid flow.

Analogous analysis can be applied to the flux of the linear momentum. If one considers the
layer of fluid of a thickness o, then the deficit of the linear momentum due to non-uniformity
of the velocity profile seems to be equal

o
AM ;= pjo (UZ —u®)dy

However, the actual deficit is smaller, because certain amount of fluid leaves the layer through
the upper edge while moving with the velocity close to its external value U, . The amount of
linear momentum carries by this fluid is equal

o
AM , ~ pAQU, =pj0 (UZ-U,u)dy

Hence, the actual local deficit of the x-component of the linear momentum in the boundary
layer is equal




M2 12 2 0
AM, =AM, -AM, :pjo (U, —u=U; +U0u)dy:,o_[O uU,—u)dy

The momentum thickness of the BL is then defined as follows

_ruton[} uen]y,
U, (X) U, (X)

0.
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The ratio between displacement and momentum thicknesses is called the shape factor.
Obviously, the shape factor is always larger than unity (why?)

Example:

Assume that the local velocity profile (X — fixed) is well approximated by the exponential law




u(y)=U,(1-e)

Then
5, =lim [’ @-1+e)dy =2 lim[e * -] = 1
O—>0 O —>0
o
O =lim| (1—-e*)e *dy=Ilim e“yd —lim| e™* — 1=
sk Sesop J‘O ( ) y S0 y S—s00J0 e dy 2a
. 0,

Hence, the shape factoris H = =2
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Exercise: do the same for U(y) =U,[1-(1+Yy)™“] , a>1

VVon Karman Equation
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Consider again the Prandtl Equation
uo u+vo.u=U,(x)Uq(x)+%£0,u

Let us integrate this equation with respect to the spatial coordinate Y in the interval [0, 0],
where Yy =0 corresponds to the wall and Yy = o is sufficiently far away from the wall. The
result is

jj(u O,u+vd,u —uoug)d¥ _ ?J‘O%Yyyu d3f

.
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Let us focus on the right-hand side of the above integral equality. We can write

5
Rs :%jo Oy udy = %('uayu‘y:a —,u@yU‘y:O)

Taking the limit © — oo , we obtain




R=ImMR;=-=>puoul =-=7

S—>00 Y lwall w

In the above, the symbol 7, denotes the tangent stress at the wall.

Next, using the continuity equation we can express the vertical velocity component as follows

u|y:0 =0 = v= joyayudy = —joyﬁxudy

Hence

O s
0 +jo uo udy =

[Jvoudy =" (-] a,udy)a,udy=(-[ audy)u

o o o
= —u(x,5)| audy+| uaudy = Tu(x,5)a,u—u(x,y)a,uldy

Inserting obtained expression to the left-hand side of the equation and integrating by parts, we
get




L, = Ij(u o,u+vo,u—-UUg)dy =
(UB,u-UUg)dy [ [u(6)d,u—ud,uldy =

uo,u-uUJi-u(d)o,u+uouldy =

3
0
39
0
3
0

uo,u-Uuji-u(d)o,u+udu+uld;—ul/ldy =

= ["u (U, —u) +[u(8) ~ul uldy— [ (U, ~u)Udy

Since limu(d)=U,, one gets

O —>0




L=lim L, =—[ {ug Uy -u)+[Ug —ulguldy - [ (U —u)Ugdy =

O —>0

=4[ uU,—u)dy-Uj [ (Us—u)dy =

{ AN (1——)dy} U [, (- )dy

Finally, we have obtained the von Karman Equation

F U5 (¥)0. (x)]+U (U5 (x)8.(X) = 57

This equation can be used for approximate solution of the BL flows. It can be also used as a
tool to estimate the local value of the tangent stress without actually measuring friction force
he wall gradient of the velocity (direct and reliable measurement of this quantity is very
difficult).

The procedure is particularly straightforward when the pressure gradient is zero. Then from the
von Karman Equation follows that




Tw = PxlUg6., (X)]= AU; (%) 5 6.0 (%)

The total friction force developed along the wall segment [X1, X2] IS obtained by means of

Integration

F.= ], mudx = pU¢ [ g 6.dx = pUSTS. () = 6., (4)] = pUZAS.,

Let p=1kg/m® , U,=100m/s,Ad, =1 mm weobtain F. =10 N /m (force per
0 T

1 meter of span).
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