
 

 

 

FLUID MECHANICS 3 - LECTURE 6 

 

INCOMPRESSIBLE POTENTIAL FLOWS  

PART 2 
 

 

 

 

 

 

 



General formulation of a potential flow problem 
 

 

 

 

 

 

 

 

In the domain  , find  velocity potential   such that: 

 
2 0       in     

 The following boundary condition is satisfied at   (impermeability of the solid bodies)  
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 Far-field (asymptotic) condition is satisfied 
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We will focus of 2D case. 



 

Mathematical preparation 

 

Consider the contour integral along the circle with the center at the origin and the radius R   
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Assume that R . We need to find the value(s) of the exponent   such that the limit of 

the above integral is finite and nonzero. 
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The answer is simple: two conditions must hold simultaneously  
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Otherwise, either  1    hence 1
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2

0
( ) 0f d



   , which means that the integral J  vanishes identically for arbitrarily large 

values of the radius  R . 

 

The velocity potential can be constructed by 

superposition of four components … 
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We assume that the velocity field corresponding to the component ˆ( , )x y  diminishes at large 

distances faster than 
1r
 (and hence it does not contribute to the total circulation in the flow) 
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Clearly, the function ̂  must be harmonic in the flow domain   , i.e.,     
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The following boundary and far-field conditions are imposed  
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An additional degree of freedom is the circulation of the contour-bounded vortex  . The 

key problem is how to find the value of  this quantity (and – in the first place – why we 

need it!) 
 

Typical aerodynamic airfoil has nearly sharp rear tip (we say – trailing edge).  In theoretical 

analysis we can assume ideally sharp tip, i.e., the radius of curvature of the airfoil contour 

becomes infinitely large at the training edge. Theoretically speaking, the angle of the trailing 

edge may be larger or equal zero. In the latter case, the trailing point is a cusp. 

 

If the contour-bounded circulation is “improper” then the fluid is forced to flow around the 

sharp edge and the velocity at the very tip becomes infinite, which is nonsense. Hence, the 

criterion of choice of the circulation is to obtain a physically meaningful flow at and near 

the sharp trailing edge.   

 

 



Kutta-Joukovski condition 

 

The circulation of the bounded vortex should be such that: 

 If the trailing edge angle is larger than zero – the trailing edge tip is the rear stagnation 

point of the flow past an airfoil. This means that the velocity at this point is equal zero. 

 If the trailing edge angle is equal zero (cusp) – the limit values of the tangent velocity 

(obtained while the trailing edge tip is approached along either the bottom of the upper part 

of the airfoil) must be equal. 
 

Further comment: 

If the trailing edge angle is nonzero, then violation of the K-J condition would lead to 

ambiguity of the velocity vector. In the case of a cusp, it is sufficient that the upper and bottom 

limits of tangent velocity are equal – as a rule the velocity at a cusped trailing edge is not equal 

zero. 

 

 

 

 

 

 

 

               Violation of the  K-J condition 



 

Let us introduce a curvilinear coordinate s along the contour and such that  0s   and s L  

correspond to the trailing edge point.  

 
Mathematical form of the Kutta-Joukovski condition is:  

 For a trailing edge with nonzero angle 
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 For the cusped trailing edge (τ  - unary vector tangent to the airfoil contour) 
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Determination of the potential flow satisfying the Kutta-Joukovski condition 

 

We write ̂  as the sum of two components  
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The scalar field  1̂  is the solution to the following boundary-value problem 
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where 1 1 1x yu  υ e e  is the velocity field induced by the bounded vortex with unitary 

circulation ( 1  ). 

 

Note that 1̂  depends only on the airfoil shape and position of the vortex center inside the 

airfoil. 
 

 

 

 

 



 

The scalar field 2̂  is the solution to the following boundary-value problem 
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The function 2̂  depends on the geometry of the airfoil and on the orientation of the free-stream 

velocity with respect to the airfoil (on the angle of attack). The value of the free-stream velocity 

works here as a scaling factor for the field 2̂ . 

 

Total velocity field is given by the formula 
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Now, we impose the K-J condition (assume that the angle of the trailing edge is larger than 

zero). Due to impermeability of the body we have 
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Thus, the K-J condition is equivalent to 
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Finally, we obtain the formula for the circulation of the bounded vortex 
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Comment: 

 

One usually solves the auxiliary BV problems formulated above by means of the numerical 

methods. These problems are in fact the particular cases of the more general problem where a 

harmonic function with prescribed distribution of the wall-normal derivative is sought in the 

exterior domain. An efficient approach to such problem is to solve numerically the Boundary 

Integral Equation. The solution of this equation yields the boundary value of the harmonic 

function. Afterwards, this function can be “reconstructed” in any point within the domain by 

computing some contour integrals.  

 
 



Aerodynamic force 
 

We will use the method of integral balance of linear 

momentum to derive a formula for the aerodynamic 

force in a 2D potential flow. 
 

Without scarifying generality, we will assume that the 

free-stream velocity is oriented along the 0x axix, i.e., 
 

, 0xU V   V e  
 

We introduce the control volume located between the 

circular contour K  centered at the origin and the 

radius R .  

 

 

Accordingly to the formula derived in the course of Fluid Mechanics I, the aerodynamic force 

can be expressed as 
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Note that the Cartesian component xF   corresponds to the aerodynamic drag, while the 

component yF   is the lift force. 
 

We will calculate VJ  and PJ . Note that the velocity field can be expressed  by the following 

formula (where the circulation   has been chosen accordingly to the K-J condition) 
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The last term contained all terms vanishing with the distance faster than 1/ R  .  
 

In the above formula, the Cartesian components of the velocity induced by the unary vortex 

appear. At the external circle K  these components are equal 
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Hence, the total velocity at the circle  K   is equal 
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Note also that the external normal vector at  K  is:          cos sinx yK
 


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Let’s calculate the normal velocity at the contour of K  … 
 

1

1

1

1

cos sin cos cos sin ( )
2 2

cos ( )

n KK R

R

U O
R R

U O





 
     

 




 






 



      

 

υ n
 

 

We also need  … 
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We compute VJ  … 
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The pressure integral PJ  can be calculated with the use of the Bernoulli Equation … 
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We need to find the square of the velocity magnitude … 
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We compute PJ  … 
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Finally, we obtain the formula for the aerodynamic force (known as the Kutta-Joukovski 

formula) 
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Note that: 

 0xF    - lack of the drag (d’Alembert paradox) !!!   

 yF U     - lift force is proportional to the circulation of the bounded vortex 

 

 

 

 

 

 

 

 

 

 

 
 



Application of complex functions in classical aerodynamics 

 
Assume that the potential flow is given with 
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Let us formally introduce the following change of the coordinates 
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Next, define a function of two complex variables 
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Let’s calculate the partial derivative 
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We know that  the following equalities hold 
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which implies that                                 ( , ) 0zW z z   

 

Thus, the function W  is in fact a function of just one complex variable, i.e., ( )W W z . Let’s 

calculate its first (ordinary) derivative … 
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The quantity  
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is called the complex velocity. The function W  is called the complex (velocity) potential. 

 

 



Examples: 

 

1. Uniform stream         ( ) ,W z V z V u i        

 

2. Source/sink at the point 
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3. Potential vortex with the center at the point 0 0 0z x iy    
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4. Doublet at the point   0 0 0z x iy   
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5. Symmetric flow past a circular contour  z a   
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Note:  Natural logarithm of the complex argument is defined as  (
argi z iz z e re   ) 
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Note that the imaginary part of the complex logarithm is the multivalued function! 

 

Exercise:  

1. Using complex calculus show that the contour 
2zz a  is one of the streamlines. 

2. Write the complex form of the Milne-Thomson theorem (see Lecture 1) 

 

 
 



Aerodynamic force and moment. The Blasius formuale 
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From the Bernoulli Equation we have          
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Hence                                                          
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Note that at the body contour only tangent velocity exists, so it is identical to the total 

velocity magnitude.  Let’s calculate the following complex value … 
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In the above, we have used the fact that the external normal vector is equal 
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We conclude that the value ( ) iW z e   computed at the body contour is a real value and 
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Hence, the pressure at the contour can be expressed as follows 
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Aerodynamic “conjugate force” and moment are expressed by the following contour integrals 
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We insert pressure from the Bernoulli equation. Then, the value of the force is  
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This way, we have obtained the 1st
 Blasius Formula  
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Next, we calculate the aerodynamic moment … 
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We have obtained the 2nd
 Blasius Formula 
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An interesting (and practical) property of complex contour integration is that changing the 

integration contour does not affect the value of the integral as long as the set of integrand’s 

singularities enclosed by the contour is not changed. This property allows for easier evaluation 

of complex contour integrals by choosing more convenient integration contours. 

 

If all singularities in the flow are “hidden” inside the body interior then the force and moment 

can be computed by choosing other (perhaps more convenient) contour. Such contour could be 

the circle K  with the large radius R , surrounding  the body.  

 



If all singularities (point-localized or spatially distributed) are confined inside the body thaen – 

from the large distance – they nearly “look like” concentrated at the origin. The far-field 

complex velocity can be written in the following form 
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where totalQ  and total  denote – respectively – total flow rate of sources/sinks and total charge 

of the circulation in the flow. The last symbol stands for all terms which diminish with the 

distance faster than 1/ z . 

  

Assume that 0totalQ   and calculate the square of the complex velocity ( )W z  … 

 

2 2 11
[ ( )] ( )totalV
W z V o z

i z








     

 

Form the 1st Blasius formula we get the expression for the force 

 

2

2

[ ( )]
2 2

i

V dz
X iY i W z dz i i V

i z


  






      



 

 

Since  V u i     the Cartesian components of the force vector are 

 

,X Y u      

 

Note that this vector is oriented perpendicularly with respect to the free-stream velocity 

direction. Indeed, we have 

 

( ) 0R V Xu Y u u                

 

Hence, there is no aerodynamic drag (d’Alembert paradox). The absolute value of  the lift force 

is equal to the length of the vector R , i.e., 

 

2 2L u      

 

 

 

 

 

 



 

Application of conformal mappings 

 
 

 

 

 

 

 

 

 

 

 

Conformal mapping                         ( )z F Z  
 

In a real notation: 

( , ) , ( , )x f X Y y g X Y   
 

,f F g F Re Im  
 

Functions f  and g  satisfy the Cauchy-Riemann conditions:   
 

,X Y Y Xf g f g       



 

 

 

 

 

 

 

 

 

 

 

 

 

 

What is an actual meaning of “conformal”? Consider the transformation of two smooth lines 

(see Figure). We will show that the angle between these lines at their intersection point is 

preserved if the mapping is conformal (i.e.,   ) and its derivative 00 ( )F Z    

(meaning that the point 0Z  is a regular point of this mapping). 

 

First, we need to know how a tangent vector to a given line changes during a differentiable 

mapping of the plane. 

 



In a general case, tangent vectors are transformed accordingly to the linear transformation 

defined by the local Jacobi matrix of the mapping. In our case, this matrix can be written as 
 

X Y X Y Y X

F

X Y Y X X Y
C R C R

f f f f g g
J

g g f f g g 

          
                 

 

 

Hence, the transformation formulae for the tangent vector are 
 

,x X X Y Y y Y X X Yt f T f T t f T f T       
 

Let’s define the complex tangent vectors to the original and transformed lines 
 

,X y x yT T iT t t it     
 

Since the transformation F  is conformal, then its derivative can be written as  

 

( ) ( , ) ( , )X YF Z f X Y i f X Y      
 

Note that the transformation formulae given above can be obtained by the following complex 

multiplication 
 

( ) ( ) ( ) , ( )t z F Z T Z z F Z   

 

 



In the case depicted in the Figure, we can write 
 

1 0 0 1 0 2 0 0 2 0( ) ( ) ( ) , ( ) ( ) ( )t z F Z T Z t z F Z T Z    
 

Next, let us note that the inner (scalar) product of two vectors can be obtained by the following 

multiplication of their complex representations 
 

1 2 1 1 2 1 1 2 1 2 1 1 1 2

1 2 1 2

[( ) ( ) ][( ) ( ) ] ( ) ( ) ( ) ( ) [( ) ( ) ( ) ( ) ]

( )

x y x x x x y y x x y x

z

t t t i t t i t t t t t i t t t t

i

       

   t t t t
 

 

meaning that 1 2 1 2( )t t t t Re .   
 

Now we are ready to show that the angle between the tangent vectors remains unchanged. To 

this aim, we calculate the product 
 

2

1 0 2 0 0 1 0 0 2 0 0 1 0 2 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t z t z F Z T Z F Z T Z F Z T Z T Z     
 

The vector’s lengths are transformed as follows: 
 

2

1 1 1 1 1 0 0 1 1 0 1 1 0 12 2
( ) ( ) ( ) ( )t t z F Z TT F Z TT F Z       t t t T  

 

By analogy                                  2 0 22 2
( )F Zt T  



From the obtained formulae follows that 
 

2

0 1 0 2 01 0 2 0 1 0 2 0

1 2 0 1 0 2 1 22 2 2 2 2 2

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )

F Z T Z T Zt z t z T Z T Z

F Z F Z


 

 t t T T T T
 

 

Which implies identity of  the sine and cosine function of the angles   and   . Hence, these 

angles are the same, which ends the proof. 
 

 

If an orthogonal grid is defined in the plane ( , )X Y  then its image in 

the conformal mapping is also a (curvilinear) orthogonal grid (at all 

regular point of the mapping). Since orthogonal grids are of particular 

value, the method of conformal mappings is often used in the grid 

generation for the use in the Computational Fluid Dynamics (CFD). 

 

 

 

 

 

 

 



A key property of the conformal mappings is that they preserve also the circulation of the 

transformed potential flow. 
 

Let ( )W W Z  be the complex potential of a certain flow in the plane ( , )X Y . The conformal 

mapping ( )z F Z  transforms this flow into another potential flow in the plane ( , )x y , with 

the complex potential  ( )w w z  such that: 
 

( ) [ ( )]W Z w F Z      and     
1( ) [ ( )]w z W F z  

 

It follows that the complex velocity transforms accordingly to the formulae 
 

( ) [ ( )] ( )W Z w F Z F Z      and    

1
1 1

1

[ ( )]
( ) [ ( )]( ) ( )

[ ( )]

W F z
w z W F z F z

F F z


 




   


 

Circulation along the line L  in the plane ( , )X Y  can be expressed as 

 

( )( ) ( )X Y X Y

L L L

U dX U dY U iU dX idY W Z dZ        Re Re  

 

Note that                         ( ) [ ( )] ( ) ( )
L L l

W Z dZ w F Z F Z dZ w z dz        

 

Where the symbol l  denotes the image of L  in the mapping F . The obtained equality means 

that the circulation is preserved in this mapping. 



 

 

Example  – Joukovski’s mapping 
 

Consider the mapping defined by the formula 
 

2

( ) , , 0
c

z F Z Z c R c
Z

      

 

The derivative of this mapping is 
2

2
( ) 1

c
F Z

Z
    

 

 

Singular points (where the derivative vanishes):  (0,0), ( ,0)c .  

 

 

 

 

 

 

 



 

CASE 1: Joukovski’s mapping of the circle | |Z c . 

 

   

 

 

 

 

 

 

 

 

 

 

The image of the circle is the horizontal segment („flat plate”) described parametrically as 

 

( ) 2 cosi iz ce ce c       

 

Note that the singular point are located at the circle.  
 

 

 



 

Exercise 1:  In the plane (X,Y), construct the potential flow in such a way that stagnation points 

assume angular locations 0    and  2     (an appropriate choice of free-stream 

velocity V u i     and the circulation   is required). Then, calculate velocity and pressure 

distributions on the plate.  Calculate also the lift force coefficient 
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
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CASE 2: Mapping of the circle    | sin | ,
cos

b
Z a a a


   . 

 

 

 

  

 

 

 

 

 

 

 

 

This circle is transformed in the arc of the circle described mathematically by the following 

formula  
 

2 2 2( 2 2 ) (2 / sin2 )x y cctg c     

 

Detailed derivation – see  the handbook „Fluid Mechanics” 5th Ed., by P.K. Kundu, I.M. Cohen 

and D.R. Dowling. 

 



 

CASE 3: Mapping of the circle (1 )Z c c a       

 

 

 

 

 

 

 

 

 

 

 

Image – symmetrical Joukovski airfoil (having for small  , maximal thickness  equal 

1.3 4c   located near the point of  ¼ of the chord, i.e., maxx c   ). 

 

Kutta-Joukovski condition  - point B must be a stagnation point of a potential flow past a 

circular contour in the plane (X,Y). Then, the velocity at the trailing edge point B’ is unique and 

finite (the angle of the trailing edge for this airfoil is equal zero) 

 

Some pictures …  

 



Symmetric flow past a symmetric Joukovski airfoil 
 

 

 

 

 

 

  

  

 

 

 

 

 

 
 

 

 

 

 

 

 



Flow at nonezero angle of attack of a symmetric Joukovski airfoil 

 
 

 

 

 

 

  

  

 

 

 

 
 

 

Flow with zero circulation and lift force – the Kutta-Youkovski condition is violated 

 

 

 

 

 

 



Flow at nonezero angle of attack of a symmetric Joukovski airfoil (cont.) 

 
 

 

 

 

 

  

 

 

 

 

 

 

The circulation   has been chosen so that the Kutta-Joukovsky condition is satisfied. The list 

force equal to L V    is generated in this case. 

 

 

 

 

 



 CASE 4: Mapping of the circle 
2( tg ) ( / cos ) , (1 )Z c ia a a c           

 

 

 

 

 

 

 

 

 

 

 

 

 

For 1  and small angles   we have:    

 Chord of the airfoil 4c  ,  

 Maximal deflection (camber of the airfoil) 2c  , 

 Maximal thickness max / 4 1.3t c   (located near ¼ of the chord from the airfoil’s nose, 

i.e., at x c  ) 

 

Again, some pictures … 



 

Flow past a non-symmetric Joukovsky airfoils at zero angle of attack 
 

 

  

 

 

 

 

   

 

 

 

 

 

 

Flow with zero circulation and lift – The Kutta-Joukovski condition is violated. Hence, the non-

symmetric Joukovski airfoil must generate lift at the zero angle of attack! 

 

 

 



 

Flow past a non-symmetric Joukovski airfoil at nonzero angle of attack 
 

 

 

 

 

 

  

 

 

 

 

 

 

Flow past a non-symmetric airfoil at the angle of attack equal 
0~ 13.7   . The Kutta-

Joukovski condition is satisfied. The circulation of the flow is zero, hence the airfoil does not 

generate the lift force. 

 

 

 



 

Flow past a non-symmetric Joukovski airfoil at nonzero angle of attack (cont.) 
 

 

 

 

 

 

 

 

 

 

 

 

 

Correctly constructed flow past a non-symmetric airfoil with the angle of attack 
030  .  

 

 

 

 

 



 

Lift force on the Joukovski airfoil 
 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

The Kutta-Joukovski condition requires that the point B is the stagnation point of the flow in 

the (X,Y) plane. The circulation in this flow must be equal 

  

4 sin( )V R            (R  -  radius of the circle) 

 



 

The lift force coefficient is equal ( 4chord R ) 
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     
 

 

 

Conclusions:  

 For small camber values (the relative camber is equal 1
2
 )  the derivative 2LdC

d



 , 

 The deflection of the airfoil lead to the vertical shift of the characteristic ( )L LC C  , 

 The zero lift conditions correspond to the negative angle of attack     
 

Exercise: 
 

1. Perform the analysis of the flow past a symmetric Joukovski airfoil and show that for small 

values of the parameter   one obtains 
 

1
1

2

LdC

d


 
   

 

What can you say about influence of the airfoil thickness on the slope of the line ( )L LC C  ? 

 



 

2. Perform more detailed analysis of influence of the airfoil camber on the slope LdC

d
  (for 

simplicity, assume that the thickness of the airfoil is zero, i.e., 0  ) and show that for slightly 

deflected airfoils the following approximate relation holds 

 

22 (1 2 )LdC
f

d



   

 

In the above, the symbol f  denotes the camber ratio (the ratio between the maximal deflection 

of the mean camber line  and the chord of the airfoil). 

 

 


