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Phugoid (Long Period) Motion of the Airplane

12.1  Introduction 

The  phugoid  or long period motion  is a characteristic oscillations of the aircraft after a small 
disturbance of the steady flight (ie. due to small horizontal control surface motion or the air gust). 
The airplane is traveling along the sinusoidal trajectory with small changes of the air speed and 
pitch angle. 

12.2  Equations of motion

Let assume:

• an aircraft is initially flying in vertical plane with constant speed V0 and with no rotation,
• after small disturbance of the flight speed V=V0 + v or pitch angle θ , the airplane will be 

always in the vertical plane, 
• the airplane have two degree of freedom, 
• the wing angle of attack as well as aerodynamic coefficients CL and  CD  are constant. 

It  can be shown that  equations of motion of the airplane developed using Frenet coordinates 
system are:
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Dimensionless and linear form of equations  derived from (1) is:

 

d v
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⋅CL⋅CD⋅v = 0 ,

d 
d t


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2
⋅C D⋅−CL⋅v = 0 ,

(2)

where:

v=
v
V 0

- non-dimensional small disturbance of flight speed, 

 - small disturbance of the pitch angle (in radians), 

t=
t
t aero

- dimensionless time, 

t aero=
2⋅m

⋅Sw⋅V 0
- aerodynamic time. 

Expected solutions of non-dimensional equations (2) can be written as

 v t =v0⋅e
⋅t ,  t =0⋅e

⋅t (3)

Substituting above function to equations of motion we obtain following set of linear equations (4) 
with unknown constant parameters v 0 ,0 ,  called as eigenvector [v0 ,0 ]

T
and eigenvalue 

 of the dynamic system:
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1
2
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1
2
⋅C D]⋅[ v̄0

θ̄0] = [00] .  (4)

The equations (4) can be solved with non-zero solution of the eigenvector if the determinant of 
the first matrix in (4) is equal to zero: 

 det [CD
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−C L 
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2
⋅CD]= 0 (5)

and this condition give us the quadratic algebraic equation for eigenvalues λ : 
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with two solutions for eigenvalues as a pair of complex coupled numbers as follows: 
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Complete  solution  of  the  non-dimensional  dynamic  equations  of  motion  (2)  is  a  linear 
combination of two sets of expected solutions (3): 

v t =v1⋅e
1⋅tv2⋅e

2⋅t = e
1,2⋅[ v1v2 ⋅cos 1,2⋅t   i⋅v1−v2 ⋅sin 1,2⋅t  ] ,

 t =1⋅e
1⋅t2⋅e

2⋅t = e
1,2⋅[ 12 ⋅cos 1,2⋅t   i⋅1−2 ⋅sin 1,2⋅t  ] .

 
(8)

where:

v1 , v2 ,1 , 2 -
non-dimensional  amplitudes  of  oscillations 
(elements of two eigenvectors "1" and "2"), 

1,2=Re 1,2  =−
3
4
⋅CD - non-dimensional damping coefficient, 

1,2=Im 1,2  =  1
2
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2 CL
2 − 3

4
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2

- non-dimensional frequency of oscillations. 

Elements of eigenvectors can be calculated by substituting into (4) subsequently eigenvalues (7) 
λ1  and λ2 : 

 
( v̄θ̄ )

1,2
=−

2⋅(λ̄1,2+CD )
C L

= a1,2±i⋅b1,2 , (9)

and the solution (8) can be written as:
 v t  = e

1,2⋅[  v1v2 ⋅cos 1,2⋅t   i⋅v1−v2 ⋅sin  1,2⋅t  ] ,

 t = e
1,2⋅[1

v1
⋅v1⋅cos 1,2⋅t  − i⋅2

v2
⋅v2⋅sin 1,2⋅t ] .

(10)

Note that in the solution (10) there are now two unknown constant - v1 ,v2 . It can be calculated 
using initial conditions for (2):

t=t 0=0 : v 0=u0,
0=0 .

For example, if  0 = 0 (we assume small disturbance of the flight speed only) then the final 
solution for this case is: 
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v̄ ( t̄ ) =

ū0

b1,2

⋅√a1,2
2

+b1,2
2
⋅e ξ̄1,2⋅cos ( η̄1,2⋅̄t +ϕ̄0 ) ,

θ̄ ( t̄ ) =
ū0

b1,2

⋅(a1,2
2

+b1,2
2 )⋅e ξ̄1,2⋅sin ( η̄1,2⋅̄t ) ,

(11)

where (see (9)):

a1,2 =−2⋅
ξ̄1,2+CD
C L

=−
CD

2⋅CL
< 0, b1,2 =

2⋅η̄1,2

CL
> 0 , ϕ̄0=atan

a1,2

b1,2

.
 

(12)

Figures  1 and  2 show results of calculations using solutions (7) and (11) for a small aircraft 
(in-flight mass = 1000 kg, wing area S = 10 m2 ,  parabolic  polar  CD  = 0.03 + 0.025*CL

2 ): 
phugoid  eigenvalues  (non-dimensional)  as  well  as  period  and  time  of  half  damping  of  the 
oscillation amplitude as functions of flight speed. 

Figure 3 presents the (dimensional!)  response of the aircraft for small perturbation of the flight 
speed  by u0=0.5  m/s (equations  (11)).  Initial  flight  speed  V0 = 50 m/s,  initial  pitch  angle 
θ0 = 0  at h = 0 m (close to the ground).
Note the long period of the oscillations (45 seconds), small damping of the oscillations (time to 
half amplitude 75 seconds) as well as small values of changes the speed V and pitch angle Θ .
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Figure 1
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Figure 2
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Figure 3
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