
 

 

 

 

LECTURE 11 

 

ENERGY OF A FLUID FLOW 
 

 

 



DERIVATION OF THE ENERGY EQUATION 
 

According to the general conservation law formula introduced in the Lecture 3, the formula 

of the conservation of the total energy of fluid contained in the control volume    can be 

written in the following form  
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e u    denotes the mass-specific density of the total energy.  

 

The terms describing the power of surface and volumetric forces are 
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while the heat terms are defined as 
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In the above, the symbol hq denotes the vector of conductive heat flux through the boundary 

  and the symbol h  stands for the mass-specific density of internal heat sources. 

 



 

The left-hand side of the above integral formula can be further transform as follows 
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where the expression marked in green is zero due to the mass conservation. The substantial 

derivative of the mass-specific energy e has appeared.  
 

Our next step is (as usual) to transform the source terms expressed by the surface integrals 

into the form which contains volume integrals. Consider the terms describing the power 

performed by surface stress. This what we do … 
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We need to explain what is the meaning of the integrand in the obtained volume integral. To 

see this, let us use the equivalent index form 
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The second term is a scalar referred to as the scalar product of tensors, in this case the stress 

tensor and the gradient of velocity (remind that since the velocity is the vector field, its 

gradient is the tensor field!). Moreover, the second terms can be transformed as follows 
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where D and  R are – respectively - the deformation and rotation rate tensors. 

 
 
 



 

Indeed, the scalar product of the stress tensor Ξ  and the rotation tensor R  is zero, because the 

former is symmetric while the latter is antisymmetric 
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Thus, the power developed by the surface forces can be finally written as 
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We will soon see that there exists a good reason for such splitting of this expression into two 

parts. 
 

The other surface integral appears due to the heat flux through the boundary of the control 

volume 
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where hq  is the flux vector of the heat conducted by the fluid. In general, we can simply apply 

GGO theorem to obtain 
 

h hQ dS dV

 





      q n q

 
 



In a general model of heat conduction, the vector hq  is assumed to be equal 
 

h T  q Λ  
 

i.e., it is equal to the product of the heat conduction tensor Λ (which characterized the 

medium’s ability to conduct heat) and the gradient of temperature.  
 

There are some constrains imposed on the properties of the tensor (matrix) Λ which ensure 

that the heat always “travels” from warmer to cooler parts of the medium and the stream of 

heat does not “circulate”.  
 

If the medium is isotropic, then the tensor  is spherical and can be written as follows 
 

Λ I  
 

The positive number   is called the heat conduction coefficient of the medium. The heat flux 

is then expressed as 
 

h T  q   (the Fourier law) 

 

i.e., this vector is parallel to the gradient of temperature. The corresponding source term in the 

energy equation reads 
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All terms in the energy equation can be now gathered in the single volume integral. The 

standard argument based of arbitrariness of the control volume Ω leads to the differential 

equation of energy conservation 
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 INTERNAL ENERGY AND VISCOUS DISSIPATION

 

It is instructive to consider separately the balance of kinetic and internal energy. To this 

end, consider the linear momentum equation multiplied (in the sense of the inner product) by 

the velocity vector υ   
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Equivalently, we have 
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In the next step, the above equation is integrated in the volume  which yields the following 

integral expression for the temporal rate of change of the kinetic energy 
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Performing the transformation of the second right-hand side term, we arrive at the equivalent 

form 
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Using the general energy balance, we conclude that the net change rate of internal energy is 
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Observe that both formulae for different forms of energy contain the same term  
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but with opposite signs! Hence, this term describes the transfer of mechanical energy into 

internal energy (or vice versa).  
 



Let’s look at the structure of this term in details. The stress tensor for the linear fluids is 

expressed as       
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The “energy transfer” term takes the following frame-invariant form 
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For incompressible flows  we have 0 υ , thus one obtains 
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The quantity R  is called the dissipation rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

FIRST INTEGRAL OF THE ENERGY EQUATION 
 

If the fluid is ideal (i.e., inviscid and not heat-conducting) then first integral of the energy 

equation can be derived. The derivation procedure is similar as in the case of the Bernoulli 

Equation. The main difference is that the flow need not to be barotropic – we assume only 

flow steadiness and potentiality of the volume force field, i.e. that f . 
 

We begin with the differential energy equation, which in the case of an ideal fluid reduces to  
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By expanding the pressure term, this equations can be re-written equivalently as 
 

( )2D 1
Dt 2

u p p        υ υ f υ 

 

Since the volume force is potential, the corresponding term in the right-hand side can be 

transformed as follows 
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Moreover, due to flow steadiness we have       
 

D
t D

0

t
p p p p



     υ υ  

 

Next, from the mass conservation equation  
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we get the following expression for divergence of the velocity field  
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The energy equation can be now written in the following form     
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where  i u p     denotes the mass-specific enthalpy of the fluid.  



 

Thus, the energy equation can be written as   
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Since the flow is stationary, the above equation is equivalent to  
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Using the same arguments as in the case of the Bernoulli Eq., we conclude that along each 

individual streamline 
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In particular, for the Clapeyron  gas  pi c T   and we get
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In general the energy constant  Ce  can be different for each streamline. If Ce is the same for 

all streamlines then the flow is called homoenergetic. 
 

 



 

Let us recall that if the flow is barotropic then along each streamline we have 
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Thus, when the flow is barotropic then  
 

e Bi P C C const     
 

i.e., the enthalpy i and the pressure potential P differ only by an additive constant.  
 

If additionally the fluid is incompressible then its internal energy u is fixed and the specific 

enthalpy can be defined as /p  . Thus, in the incompressible case, the energy and 

Bernoulli equations are identical.  

 


