
 

 
 

 

 

 

LECTURE 12 

 

ENTROPY AND THERMODYNAMIC 

INEQUALITY 
 

 

 

 

 

  



ENTROPY OF A SMOOTH FLOW OF IDEAL FLUID 

 

We will show that if the flow is smooth (i.e., all kinematic and thermodynamic fields are 

sufficiently regular) then the entropy of the fluid is conserved along trajectories of fluid 

elements.  

 

To this end, let us consider the equation of internal energy derived in the Lecture 11. For the 

ideal fluid (no viscosity and no heat conduction) this equation reduces to  
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We have already seen the relation   
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which is implied by the mass conservation equation.  

 

Thus, the equation for the internal energy u  can be written as follows 
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Let us remind that the 1st Principle of Thermodynamics can be expressed in terms of 

complete differentials of three parameters of thermodynamic state: entropy s , internal energy 

u  and specific volume /1  . The corresponding form of this principle reads 
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For the thermodynamic process inside individual fluid element one can write 
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In the above, the equation for the internal energy has been used. We see that entropy of the 

fluid is fixed along trajectories, as stated. We will show later that this statement is no longer 

valid if strong discontinuities (called shock waves) appear.  

 

We have already introduced the concept of homoenergetic flows. In such flows we have  

 
global21
e2

i C     ,          or  equivalently          ( )21
2

i 0     . 

 

Similarly, we call the flow homoentropic  if  s 0  . Thus, when the flow is homoentropic 

then the entropy is uniformly distributed in the flow domain.  

 

 



 

Since the 1
st
 Principle of Thermodynamics can be written in the following form 
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then for any stationary flow one has               
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In the case of a homoentropic flow we get  
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Thus, if the flow is homoenergetic and homoentropic, it is automatically barotropic and 

the Bernoulli constant CB is global. Note that in the case of 2D flows, it implies that the 

velocity field is potential (explain why!). 
 

Yet another interesting result can be derived from the Euler equation written in the Lamb-

Gromeko form for the stationary flow 
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Using the entropy/enthalpy form of the 1
st
 thermodynamic principle, we can re-write the 

above equation in the following form called the Crocco Equation 
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According to the Crocco Equation, any inhomogeneity in the spatial distribution of 

entropy in the homoenergetic flow immediately leads to vorticity generation. 



THERMODYNAMIC INEQUALITY 
  

Consider the control volume  . The change in time of the total entropy of the fluid 

which occupies instantaneously this volume can be expressed as the sum of three 

contributions: 

 the change caused by the transport of entropy in or out of    through its boundary  , 

 the change caused by the heat conduction (due to inhomogeneous temperature 

distribution), 

 the change caused by thermodynamically irreversible processes of any sort inside  . 

 

The Second Principle of Thermodynamics says that any thermodynamically irreversible 

process makes the entropy increasing.  

 

In other words: the total change rate of the entropy contained in the volume   must not 

be smaller than the change rate due to the entropy transport and heat conduction. 

 

As before, the total amount of entropy contained in the volume   at a given time instant can 

be expressed by the following volumetric integral 
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Since   is fixed in time, the total rate of change of S   is equal 
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Using the formula derived in the Lecture 3, we can express the rate of change due to the 

convective transport of entropy through the boundary by the following integral 
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Thus, the net rate change of  entropy in   is equal (see Lecture 3 for mathematical details of 

integration; note that the mass conservation equation is used to simplify the form of the final 

integral) 
 

( ) ...

transport
production total

throug

t

h

D
t D

dS dS dS

dt dt dt

s dV s dA s dV



  

  

  






  

      υ n

 

 



 

Accordingly to the 2
nd

 Principle of Thermodynamics, the entropy “production” rate is at 

least equal to the increase of entropy caused by heat conduction. 

 

In order to evaluate the rate of entropy change due to heat conduction, consider the small 

portion   of the volume  . The boundary of this portion will be denoted by the symbol 

A . The amount of heat exchanged by this volume during a small time interval Δt can be 

expressed as  
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In the above, q  is the local heat flux vector and V  is the volume of  . The corresponding 

entropy change in   in the time interval Δt is equal  
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Integration over the whole volume  , division by Δt  and taking the limit t 0   yields the 

formula 
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Then, the 2
nd

 Principle of Thermodynamics implies that 
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The heat flux integral term can be transformed as follows (explain!) 
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Thus the above thermodynamic inequality can be written as 
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For  a thermally isotropic fluid, the heat flux is parallel (and oppositely oriented) to the local 

temperature gradient (the Fourier Law) 
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where 0    is the coefficient of heat transfer. 

 

Inserting the Fourier form of the heat flux into the thermodynamic inequality we obtain the 

final form (the Gibbs-Duhem inequality) 
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The interpretation can be formulated as follows: if the heat transfer is present in the 

flow then there exists a minimal admissible rate of entropy production. 


