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Fundamentals of turbulent flows modeling 
 

Reynolds decomposition 

 

 

 

 

 

 

 

 

 

 

mean pulsation

f f f    

 

An averaging procedure is assumed such that 

 

f f     0f        
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Reynolds averaging 

 

Unsteady flow (slowly varying mean trend …) 
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Averaging time – small when compared to the characteristic time scale of the mean 

tend, large when compared to the characteristic time scale of turbulent fluctuations. 

 

Statistically steady flow … 

 

0

1
( ) lim ( , )

2

t T

t TT
f f d

T
 




 x x  

 

 

 

 

 



AERODYNAMICS I 

The Reynolds averaging commutes with differentiation … 
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Derivation of the (unsteady) Reynolds-averaged Navier-Stokes equations 

 (U)RANS (only incompressible case) 

We begin with … 
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Reynolds decomposition … 
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After substitution the averaging is applied … 
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We obtain …. 
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The viscosity term can be written as follows (the Newtonian fluid)  … 
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Define mass-specific turbulent energy   1
2 j jk      and the Reynolds tensor … 
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Deviatoric part of R is the turbulent stress tensor … 
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Note that the trace of T  is equal zero. 
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Two last terms in the right side of RANS Eq. can be transformed as follows 
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Hence, the RANS equation can be written as 
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Turbulent viscosity 

 

There is no “natural” constitutive relation for the turbulent stress tensor – we have 6 

additional unknowns and no additional equations! The problem is unsolvable, unless 

it gets “closed” some way. 
 

Hypothesis (Boussinesq): the turbulent stress tensor can be related to the deformation 

rate of the mean flow in an analogous way as the “real” (molecular) stress tensor. 
 

2 2( )T
T T     T D S D  

REMARKS: 

 Deformation rate tensor D  is defined for the mean flow 

 Postulated formula is mathematically consistent since both tensors T  and D  have 

the zero trace. 

 The quantity 
T  - called a turbulent viscosity – is not a physical property of the 

fluid! It characterizes the flow and as such it is – generally - dependent on both 

location and time. 
 

Conclusion: we still need a method of evaluation of the turbulent viscosity in terms of 

a mean flow ! Such methods are called closure models (e.g., Spalart-Almaras, k 
and many others).  
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Turbulent boundary layer (TBL) 
 

Assumptions: 

1. External flow - 2D 

2. mean flow inside TBL – 2D 

3. The Prandtl’s assumptions as to the relative magnitude of different terms in the 

governing equations are still applicable. 

 

Reynolds-averaged equation of motion in a streamwise x direction (traditional 

notation): 
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As sume that ,II I III  which leads to the simplified form 
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We also have continuity equation for the mean flow       0
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Let us introduce the turbulent viscosity 
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The “turbulent” Prandtl Equation can be written as follows 
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While approaching the wall, turbulent pulsations diminish to vanish completely at the 

very wall. Hence, the turbulent viscosity near the wall is small. At the wall, 0T   and 

the shear stress (friction) is equal 
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Conclusion: Von Karman equation for the TBL and the LBL is formally the same 
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Mixing length hypothesis (Prandtl) 
 

By analogy to the kinetic theory,  Prandtl proposed a simple model 

relating the turbulent viscosity to the mean flow in the TBL.  

 

Assume that a certain small parcel of a fluid is shifted vertically by 

turbulent fluctuations and the average distance of this shift is equal 
ml (

ml  ). Assume that during such shift this parcel retains its 

horizontal velocity. Hence, such re-location will cause appearance of a 

fluctuation in the wall-parallel velocity, accordingly to the formula 
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Hence, the (kinematic) turbulent viscosity is proportional to the wall-normal mean velocity 

gradient and the square of the mixing length 

 

2

T m

u
l

y





 

 

But what is the mixing length in the TBL? Prandtl assumed that in the region near the wall the 

mixing length rises proportionally to the distance from the wall, i.e., ml y .  

 

In follows that 
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We will show that this formula leads to interesting prediction -  there must be a region inside 

the TBL when the wall-parallel velocity profile is described by the logarithmic function. 
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Structure of TBL 
 

As we already know, the turbulence dies away at direct vicinity of the wall – the flow there is 

essentially laminar. This region is called the laminar (or viscous) sublayer (LS). The tangent 

stress inside the LS is basically constant with the distance from the wall and equal to the 

tangent stress at the wall. It follows that the velocity profile inside the LS is linear. We have 
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In the region over LS, the turbulent viscosity quickly increases with the distance and quite soon 

becomes comparable with the molecular viscosity. Further on, it increases quite rapidly and 

becomes dominating (it is larger by orders of magnitude than the molecular viscosity).  
 

Accordingly to the mixing length theory, we have 
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Since the tangent stress changes continuously, then – at the certain distance from the wall we 

have 
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We can introduce the following quantity (co called friction velocity) 
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as well as a dimensionless measure of  the distance from the wall 
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Note that the linear velocity profile inside the LS can be now described by the formula 
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Let us integrate the expression for the velocity gradient obtained from the mixing length theory. 

We obtain the relation which can be written in the non-dimensional form as follows 
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The constants K and C have been determined experimentally. It turn out that  a “typical” TBL 

conforms very well to the above formula and the (nearly) universal choice of these constants is 

possible! Usually, we write the above formula (it is referred to as the “law of the wall”) in the 

following form 
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where the (universal) values are  0.41   (The Karman constant) and 5.25C  . 

 

The following figure shows the actual distribution of the non-dimensional velocity plotted 

against the dimensionless coordinate y
 … 

 

 

 



AERODYNAMICS I 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Viscous sublayer 5y   (viscous effect are dominating) 

 Buffer layer  5 30 50y    (molecular and turbulent viscosities are comparable in size) 

 Logarithmic layer 50 150 200y    (turbulent viscosity dominates, the wall is 

“sensed” by the fluid) 
 

All together 15-20% of the total TBL thickness. The remaining part is called the outer layer. 

For larger wall distances inside OL, the influence of the wall gradually diminishes.  
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Application of the law of the wall to determination of the wall shear-stress 
 

Note that direct measurement of the wall-normal gradient of the velocity at the wall is 

very difficult (if possible) since the viscous sublayer is extremely thin (roughly tens of 

microns, which is a fraction of one percent of the total TBL thickness) 

 

Indirect method 
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Turbulent shear stress and kinetic energy profiles across the TBL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(source: E.L. Houghton at al.: Aerodynamics for Engineering Students, 6th Ed., Elsevier Ltd., 2013) 
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Mean amplitudes of the velocity pulsations across the TWP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(source: E.L. Houghton at al.: Aerodynamics for Engineering Students, 6th Ed., Elsevier Ltd., 2013) 
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Turbulent viscosity and the intermittency factor plotted across the TBL 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
(source: E.L. Houghton at al.: Aerodynamics for Engineering Students, 6th Ed., Elsevier Ltd., 2013) 
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TBL on the flat plate 

 
Although real lifting surfaces are not flat, one can acquire some useful quantitative 

characteristics of TBLs by analyzing the particular case – the TBL over the flat plate 

(zero pressure gradient). 

 

Result 1 – the 1/7 law (Prandtl). 

 

The velocity profile of the TBL over the flat plate is quite reasonably approximated by 

the following simple power law (see “Aerodynamics for Engineering Students” by 

E.L. Houghton at al. for derivation, page 522)  
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Note:  

 this formula cannot be applied at the very wall (singularity in the drivative!) 

 this formula is applicable for the local Reynolds 
7Re 10x    
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Result 2: Wall shear stress and the local friction coefficient can be calculated from the 

formulae (see again the book AforES) 

 
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Result 3: Rate of thickening of the TBL 
 

From the von Karman equation written for the TBL with zero pressure gradient we get 
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
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Assuming the 1/7, one can calculate the momentum thickness   as a fraction of the 

total TBL thickness  , namely 
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Thus 
1/4

72
0.2406

14

fCd

dx U

 



 
   

 
 

 

Assuming that the thickness of the TBL at  x = 0  is zero, we get the result 
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or, equivalently 
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Using the 1/7 law we can also calculate the displacement thickness 
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Note that the shape factor ~1.3H   is much smaller than for the LBL (Blasius), i.e., 

around 2.6. 

 

Finally, we obtain the following formulae 
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Comparison of the rate of thickening of LBL and TBL on the flat plate (sorce: E.L. Houghton at al.: Aerodynamics 

for Engineering Students, 6th Ed., Elsevier Ltd., 2013) 

 



AERODYNAMICS I 

Result 4: Local and total coefficient of a friction drag 

 

Substitution of the formula for the TBL thickness to the expression for the local 

friction coefficient yields 
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Hence, the wall shear stress varies along the wall as 
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The coefficient of the total friction drag can be computed as follows (here L  is the 

streamwise length of the plate) 
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REMARK: the above formula describes the value of the friction drag coefficient in 

the situation when the boundary later is the turbulent one from the very beginning of 

the plate (leading edge).  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Local friction coefficient plotted against the local Reynolds number (źródło: E.L. Houghton at al.: Aerodynamics for 

Engineering Students, 6th Ed., Elsevier Ltd., 2013) 
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Engineering approach to the friction drag mixed BLs 

 

 

 

 

 

 

 

 

 

 
 

 

Mixed BL on the flat plate (from E.L. Houghton at al.: Aerodynamics for Engineering Students, 6th Ed., 

Elsevier Ltd., 2013) 

 

Hypothetical beginning of the TBL:  

1/5

4/5

5

0.383
0.383

(Re )

t

t t t

t

T

T T T

x T

x
x x

U






 
   

 
  

 



AERODYNAMICS I 

Distance from the leading edge to the transition point:    Ret tx
U


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Momentum thickness of the laminar BL at the transition point 
tx x :    
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Momentum thickness of the TBL at the transition point 
tx x :        
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x
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Key point: the momentum thickness must change continuously in the transition region – 

otherwise the wall shear stress at the transition point is not well defined (see the Karman 

Eq.!). 

Hence,   
t tL T  , meaning that  
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“Effective” length of the TBL is                   
tt TL x x    
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It follows from the Karman Eq. written for the BL with zero pressure gradient that the total 

friction force developed on the wall segment [a,b] is equal 
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Note that the increments of the momentum thickness of the LBL along the segment [0, ]tx  and 

the momentum thickness of the TBL along the segment [ , ]
tt T tx x x  are equal. Thus, in both 

cases the friction force is the same! 

 

In other words: the total friction drag of the whole mixed BL is equal to the friction drag of the 

TBL developing along the segment [ , ]
tt Tx x L .  

 

We can write 
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The (global) friction drag coefficient is 
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Note: The obtained formula is valid only if Re Ret . Otherwise, the boundary layer is entirely 

laminar and the global friction coefficient is given by the formula derived earlier, namely 

 

2.586

RefDC   

  
 Exercise: Using the flat-plate LBL and TBL formulae for displacement thickness and 

assuming that 2.6 , 1.3LBL TBLH H  , show that the BL’s thickness (say, 99 ) increase in the 

transition region by approx. 40%.  
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LAMINAR-TURBULENT TRANSITION IN THE BLS 
 

General structure of the transition region (natural transition) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



AERODYNAMICS I 

Transition scenarios 
 

1. Natural transition (low level of background turbulence, smooth wall) 
 

Exponential growth of 2D linearly unstable wave-like disturbances (Tollmien-Schlichting 

waves), secondary instability leading to 3D disturbance field in the form of streamwise streaks 

and vortices, development and breakdown of hairpin vortices followed generation of the 

scattered pattern of the wall turbulent spots, merging of spots into fully developed BL. 

 

2. Bypass transition (high level of background turbulence, wall 

roughness/waviness) 
 

Small disturbances “absorbed into” the LBL are rapidly amplified in the non-modal (algebraic 

growth) to the level when nonlinearity takes over. Further development mostly similar to the 

natural conditions. 

 

3. Forced transition  
 

Laminar BL is disrupted by strong nonlinear interaction with vortex structures generated in 

wakes behind the localized obstacles attached to the wall (for purpose - like the vortex 

generators, or accidentally - like surface contaminations, e.g., dead insects). 
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PRIMARY MECHANISMS OF DISTURBANCE GROWTH 
 

Modal mechanism – exponential growth of the linearly unstable modes of small 

disturbances in the flow. This is the basic mechanism of initial disturbance growth in 

the natural transition scenario. 
 

[ , , , ]( , , , ) [ , , , ]( )exp[ ( )]}u w pu w p t x y z A A A A y i x z t         Re{  

, , r iR i C          unstable if  0i    

 

 Stability region – inside the loop of the neutral 

stability curve (NSC).  

 When 0dp dx   and Re  (the limit if 

vanishing viscosity) both branches of the NSC approach 

asymptotically the Re-axis.  

 The case 0dp dx   is different! The velocity of 

such BL has an inflection point which renders the flow 

unstable even if the viscosity is absent (Reyleigh and 

Fjortoft instability criteria). 

 No amplification is possible for sufficiently large 

frequencies of the modes (the BL works as a low-pass 

filter). 
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 For the unstable modes 0r  , i.e., the unstable 2D 

modes have the form of travelling waves (the Tollmien-

Schlichting waves). In the self-similar BLs (Falkner-

Skan) the range of the wave number of the most unstable 

T-S waves is – roughly -  [0.25-0.35] (the unit of length is 

the displacement thickness. It corresponds to the wave 

length in the range of 7-10 
99 .   

 Stability threshold of the 2D T-S waves depends 

strongly of the streamwise pressure gradient. Favorable 

gradient delays instability (increases Recr
) while the 

adverse one promotes instability (decreases Recr
). 

 

Example: critical Reynolds number (based on the displacement thickness 
) for  

 Blasius BL (flat plate, zero pressure gradient) is ,Re 520cr  .   

 Falknera-Skan BL with 0.075m    (adverse pressure gradient, the BL at the flat plate at 

the angle of attack approx. 14.6 degrees) is ,Re 130cr   

 Falknera-Skan BL with 0.075m   (favorable pressure gradient, the BL at the flat plate at 

the angle of attack approx. -12.5 degrees) is ,Re 2000cr   
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Reminder: for the Blasius BL 
 

Re 1.721 1.721 1.721 Rex

U U x U x

U

 

  
   





     

 

Thus,  
2Re 0.338Rex    and  ,Re 91300x cr  .  

 

Actual transition point is further downstream the BL. The reason is that it takes a certain 

distance along the wall until  the amplitude of the 2D waves grows sufficiently to trigger further 

stages of transition. But when they begin, the further process is very rapid -  a short distance 

from the point when 2D finite-amplitude (saturated) T-S waves undergo a secondary instability, 

the sudden eruption of chaos is observed. Therefore, it is justified to assume that the 

transition point is where the amplification of the initial 2D disturbances reaches a certain 

threshold, sufficient to sustain further development of instability towards a fully turbulent 

flow. 

 

The position of the transition “point” depends strongly of the external pressure gradient, 

geometry and quality of the wall surface (smoothness) and the level of the external disturbances 

that could be “received” by the BL. The latter problem – e.g. the mechanism by which external 
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perturbation (turbulence, acoustic noise, wall imperfections) are “internalized” by the BL is 

called the “receptivity problem”.  

Engineering approach to prediction of the laminar-turbulent transition in the BL. 
 

The most popular and computationally effective engineering 

methods of transition prediction are based on the idea of the 

“e
N
 method”.   

 

In the basic form of this method, the cumulative amplitude 

growth define as 
1

0

0ln( / ) ( )( )

x

i

x

A A x dx   

is determined for a bunch of modes with a different 

frequencies. As a result, one obtains a family of lines showing 

how the amplification factor of each mode grows downstream 

the BL. Then, one can define the envelope for this family, 

which is a line effectively parametrized by the frequency (see 

figure aside).  

 

It is assumed that the transition location is where the value at the envelope reaches the critical 

value , usually in the range 7-10.  In modern realizations of this method, local amplification 
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rates are computed with the use of  approximate formulae based on geometric characteristics of 

the BL velocity profiles. This way, time-consuming linear stability calculations are avoided. 

Nonmodal (algebraic) growth 

 

The amplification of disturbances follows from presence of “nearly parallel” modes of 

disturbances, which – when combined properly in the initial disturbance – may lead to 

disturbance amplification by several orders of magnitude, which triggers the nonlinear effects. 

This type of (transient) growth may occur even if all modes are linearly stable (!) and it is 

characterized by high amplification rates (much faster that in the modal mechanism). 

 

 

 

 

 

 

 

 

 
Initial stage (left) - “nearly parallel” 3D modes combined together give the initial disturbance 

in the form of streamwise-oriented weak vortices, generating mostly wall-normal and spanwise 

velocity components ( and w).  These modes have also strong streamwise velocity 
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component u, however, due to cancellation, this components in almost nonexistent in the 

initial disturbance.  

 

 

 

 

 

 

 

 

 

 

Final stage (right) – since the component modes are damped with different rates, the 

amplitude of the combined disturbance initially grows. The cancellation of the 

streamwise component is no longer possible – a large u (typically, ,u w  ) appears 

in the flow. Since the disturbance is spanwise-periodic, this development results in the 

spanwise modulation of the main (undisturbed flow), seen in the form of the 

“streamwise streaks”. 
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Example: algebraic growth of small disturbances in the wavy channel 

 

 

                             t = 0                                                                    t = 96   

 

Streamwise (normal to the slide) component of the velocity disturbance field has 

been amplified by the factor of 1000!  
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Note: this is example of the temporal transient growth, while in the BL we deal with 

the spatial transient growth (more complicated issue).  


