
 

 

 

FLUID MECHANICS 3 - LECTURE 3 

 

ONE-DIMENSIONAL STEADY GAS FLOWS 

WITH HEATING/COOLING OR FRICTION 
 

 

 

 

 

 

 

 



 

 

 

In the previous lecture,  we considered quasi one-dimensional theory of steady and 

adiabatic gas flows through the ducts with variable cross section (nozzles).  Here,  we 

will developed an elementary theory on “really” one-dimensional flows, trying to 

account for effect invokes by the heat delivery (heating) or removal (cooling) .  

 

Next, we develop a simple one –dimensional model of gas flow which mimics the 

presence of internal and wall friction (viscosity).   

 

 

 

 

 

 

 

 



One-dimensional steady flow of a gas with heating or cooling (the Rayleigh 

model) 
 

Let us remind that in case of one-dimensional, steady and thermally isolated flow, the following 

three equations hold (due to conservation of mass, linear momentum and energy) 

 

u const    

2p u const    

2 21 1
2 1
u a const    

 

where 
p

a RT





     stands for the speed of sound. 

 

If the flow exchanges heat with external environment then it is not adiabatic and the above form 

of the energy equation is not valid. Two first conservations laws remain unchanged, though. 

 

Let us see what relations can be derived from the mass and linear momentum conservation. 

Such relations will be also applicable to the flows with heating or cooling. 

 

 



 

We begin with the mass conservation equations. In can be written and transformed as follows 

 

a

p p p u p
u u u M const

RT RT RT RT R T

  


   
      

Hence 
1
2

p
M pMT const

T


   

 

Let us apply (formally) the logarithm to the above equality 

 
1
2

ln ln lnp M T const    

 

Next, let us differentiate obtained formula. The result id the following relation between 

differentials of pressure, temperature and the Mach number 

 

1
0

2

dp dT dM

p T M
    

 



 

Concern now the equation of the linear momentum. Using the Clapeyron relation, the 

momentum equation can be written as follows 

 

2
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Clapeyron
Equation a

u u u
p u p p p p M

p RT RT


  


          

 

Hence 
2(1 )p M const   

 

Again, we apply the logarithm  
 

2ln ln(1 )p M const    

 

… and differentiate 

2
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dp M dM

p M




 


 

 

We have obtained another differential relation, this time involving only pressure and Mach 

number. 



 

The next move is to use the above relation to express (logarithmic) differential of temperature 

by the differential of the Mach number. The result reads 
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dT M dM

T M M
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



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For the Clapeyron gas,  the mass-specific  enthalpy  is related to the temperature by the formula   

Pi c T . Then 
 

di dT

i T
  

 

Therefore 
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







 

 

This formula can be integrated  (even analytically) to obtain the explicit  relation ( )i i M .  

 
 



Let us now consider the mass-specific entropy. From the 1st Principle of Thermodynamics and 

the Clapeyron equation, the following relation can be derived 

 

P

1st Principle Clapeyron
of Thermodynamics Equation

P

dq dT dp dT dp
ds c c R

T T T T p
      

 

Hence 

 

( 1)P

V V V

cds dT R dp dT dp

c c T c p T p
       

 

The logarithmic differentials of temperature and pressure can be plugged into the above 

expression. As a results, the differential of the mass-specific entropy can be expressed by means 

of the Mach number and its differential 
 

2

2
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2

(1 )V

ds M dM

c M M








   

 

Again, the above formula can be integrated (even analytically) to obtain the explicit relation

( )s s M . 



The obtained relations can be illustrated in the form of the M-parametric plot in the 

entropy/enthalpy plane (the momentum line) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The obtained relations allows to find how heating/cooling affects the flow.   

 

Note that if the heat is delivered along the duct, the entropy increases downstream. According 

to the above relation,  heating will cause the subsonic flow to accelerate ( 0dM  ), while it 

will decelerate the supersonic flow ( 0dM  ).  Clearly, cooling of the flow along the duct will 

have exactly opposite effect: it slows down the subsonic flow and accelerates the supersonic 

flow. 

 

Interesting conclusion can be also drawn from the relation  for the mass-specific enthalpy 

 
2

2
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(1 )

di M dM

i M M









 

 

Note that the sign of di   is the same as the sign of  dM  if  
21 0M   and opposite if

21 0M  .  The “switching” value  
1

1M


    lays within the subsonic flow region. 

 



 

Thus, if the subsonic flow is accelerated downstream by heat delivery then  its enthalpy rises 

along the duct only to such section where the Mach number reaches the value of 1/M  .  

At this section the enthalpy reaches its maximal value and further downstream it actually drop 

despite of heating!  Since the enthalpy is proportional to local temperature – the same is true for 

temperature as well. It means that in the duct segment where the Mach number assumes values 

between 1/M   and 1M   the  gas is getting colder despite absorption of heat. In other 

words, the “effective” specific heat of the gas becomes negative! 

 

Effective calculation of flow parameter in the presence of heating/cooling requires derivation of 

some new relations.   

 

 

 

 

 

 

 

 

 



Calculation of temperatures 
 

Note that the flow with heating/cooling is not adiabatic, hence its total temperature 0T  is not 

globally constant anymore – it actually changes continuously along the heated/cooled  segment 

of a duct. It means that the relation between temperature and total temperature derived 

previously, i.e. 
 

21
02

(1 )T M T   

 

can be still used locally.   

 
 

Using two relations derived from the mass and the linear momentum conservation principles 
 

p
M const

T
     ,     

2(1 )p M const   

 

we can easily conclude that                 
 

21 M
T const

M


  



Taking into account the relation between actual and total temperatures (the latter defined 

locally), one can re-write the above “conservation” law in terms of the total temperature, 

namely 
 

2

0
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2

1

1

M
T const

M M









 

 

It is practical to define the constant in the above formula by evaluating it at the special section 

of a duct. This special section (real or only hypothetical) is such that the Mach number reaches 

the value of 1 (the critical section). As usual, the parameter at such section (critical parameters) 

are denoted by the symbols marked by the star in the lower index.  
 

Thus, above formula implies that     
 

2
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M
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
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or           
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It can be seen that     0

0

( )
1

T M

T 

 .   This is consistent with our previous observation that heat 

delivery always pushes the flow towards the critical conditions. 



 

The just derived formula is also very useful for determination of the amount of heat delivered to 

or removed from the flow.  

 

In particular, the amount of heat related with the change of the Mach number from the local 

value M  to the critical conditions ( 1M  ) can be computed as follows 

 

0 0 0 0( ) ( ) [ ( )]Pq M i i M c T T M      

 

Note also that the heat obtained this way expressed in the physical units [J/kg]. Multiplication 

of this quantity by the mass flux brings the amount of heat delivered/removed from the flow per 

the unit time, i.e., it brings the heating/cooling power.   

 
 

 

 

 

 

 

 

 

 



Calculation of pressures 

 

The calculation of pressures is based on the formula derived from the linear momentum 

balance, namely 
 

2(1 )p M const   

 

Written for two different duct’s sections, the above “conservation” law brings the equation   
 

2 2

1 1 2 2(1 ) (1 )p M p M     

  

It is again convenient to derive an equivalent relation expressed in terms of the stagnation 

pressures. Using the well-known isentropic relation 
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p
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p

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 




 





    

 

one obtains                               
( ) ( )

) )( (

2 2

01 1 02 2

2 21 11 1
1 22 2

p 1 M p 1 M

1 M 1 M
 

  

 

  

 


 

 

 



 

Again, let’s assume that one of the sections is a special one – the critical section (say 1M M  

and 2 1M   ). Then, we get the equality 
 

( ) ( )

) )( (

2
0 0

21 11 1
2 2

p 1 M p 1

1 M 1
 

  

 

  

 


 

   

 

This formula can be  transformed  to the ratio 

 

( ) ]
( )

( )( )

[ 2 1
0

2 1
20 1

p 1 M
M

p
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2








 




 

 


 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that  the ratio ( )0

0

p
M 1

p 

 .   This result is consistent with the observation that heating 

always pushes the flow towards the critical condition, while at the same time increases the 

entropy and - thus – reducing the value of the total (stagnation) pressure.  

 



 

One-dimensional steady flow of a gas with friction (the Fanno model) 
 
Here, we will derive the simple model of a stationary gas flow in a duct with friction.  

 

Again, let’s recall the original set of conservation equations valid for 1D steady and adiabatic 

flow. 

u const    

2p u const    

2 21 1
2 1
u a const    

 

where 
p

a RT





     stands for the speed of sound. 

 

In the presence of friction, the linear momentum in the above form is no more valid. Yet, two 

remaining equations are still OK. In particular,  it is assumed that the work performed by the 

friction forces  affect only the amount of different forms of energy (kinetic, internal) but the 

total energy is conserved. 

 

 



 

We have already derived from the mass conservation equation that 
 

1
2

p
M pMT const

T


   

 

Using the technique of logarithmic differentials we have obtained the relation 
 

1
0

2

dp dT dM

p T M
    

 

The relation between actual and total temperature is 
 

21
02

(1 )T M T   
 

This time, the total energy is conserved, hence the total temperature 0T  is a global constant.  
 

Thus     
21

2
ln ln(1 )T M const    

and       
2

2 21 1
2 2

( 1) ( 1) ( )

1 2(1 )

dT M dM d M

T M M 

 
 

 
   

 
 

 



 

Two obtained  above differential relations can be solved with respect to the logarithmic 

differential of pressure. One obtains 
 

2

21
2

1 ( 1)

(1 )

dp M
dM

p M M




 
 


 

 

Earlier, we have derived the formula for the entropy 
 

2

21
2

1
( 1)

(1 )V

ds M
dM

c M M





 


   

 

which can be integrated analytically to an explicit (algebraic) form   ( )s s M  
 

The logarithmic differential of the mass-specific enthalpy is 

 

21
2

( 1)

1

di dT M dM

i T M





 


 

 

By integrating the above relation, one can obtain   the formula  ( )i i M . 

 



The obtained relations can be illustrated in the form of the M-parametric plot in the 

entropy/enthalpy plane (the energy line) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Note that the formula for the differential of the mass-specific entropy implies that the sign of 

ds  matches the sign of dM  for a subsonic flow ( 1M  ), while for the supersonic flow 

1M  ) the signs of these differentials are opposite.  However,  the friction works as a 

thermodynamically irreversible “converter” of the mechanical energy into the internal one – 

clearly, a systematic downstream increase of entropy must occur! This implies further that in 

the subsonic flow the Mach number must increase along the duct. As usual (the principle of 

reverse action), the supersonic flow reacts in an opposite way, i.e., the presence of friction 

decelerates such flow. 

 

Summarizing – the friction always pushes the flow in the direction of the critical 

conditions. 

 

We will derive the quantitative description of the above effects. The idea is to modify the 

equation of motion (the 1D Euler equation) by an additional term mimicking the presence of 

friction. 

 

 

 

 



Following the ideas developed for incompressible flows in hydraulic systems, we will assume 

that the pressure drop due to friction can be expressed by a Darcy-Wiesbach formula 
 

21
2

x
Dp u      

 

In order to incorporate this formula into the equation of motion, we define an equivalent 

volumetric force 
 

2 21
2

2

x
D

x

u AA p u
f

m A x D

  




   

 
 

 

After insertion to the Euler equation 
 

d d
xdx dx

u u p f     

 

one obtains 
 

21
2

d d
Ddx dx

u u p u
    

or 

2
1 1

2
d d

u Ddx dxu
u p 


   

 



The further transformation of this equation are 

 

2 2 2 2
1 1 1 1 1 1pd d d d

p p pdx dx dx dxu u u M

pp p p p

 
    

 

2

1

2

dx

u M p D

du dp 


    

 

The final goal is to derive the relation between the differentials dM  and dx . To this aim, we 

eliminate the velocity using the formula 

  

u Ma M RT   
 

Logarithmic differential of this formula reads 

 

21
2

1 1 1

2 2 1

du dM dT M
dM

u M T M M




 
    

 
 

 

 

 



After insertion to the equation of motion, one arrives at 

 
2
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1 ( 1) 1 1 ( 1)

2 ( 1) (1 ) 2

M M
dM dx

M M M M M D

  

  

   
    

   
 

 

After some algebra we finally get the differential equality 

 
2

2

2 2 21
2

(1 )
( )

( ) (1 )k

M
dx d M

D M M



 





 

 

This equality can be integrated  in the interval [ , ]x x  

 

2

1

2 1
2

(1 )

(1 )

x

kx M
dx d

D

 


 








   

 

where x  denotes the x-location of the (actual or hypothetical) section of a duct where critical 

conditions ( 1M  ) are achieved. 

l 

 



Using the mean value of the coefficient of pressure lose  , the left-hand side of the above 

integral equality can be written as follows 

 

( )
( )

x

x

x x L
dx M

D D D

   
   

 

The integral in the right-hand side can be computed analytically in a closed form. The final 

formula reads 

 
2 2

2 2

1 1 ( 1)
( ) ln

2 2 ( 1)

L M M
M

D M M

  

  
   

 
 

 

 

The interpretation of the above formula is straightforward:  assuming that the average value of 

the pressure lose coefficient is known, this formula allows for determination of a distance 

between a given duct’s section (where the Mach number is M ) and the (real or hypothetical) 

section downstream when the gas reaches the critical state. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



As in the case of the flow with heating/cooling,  we have to know how to calculate local 

pressure and temperature. 

 
 

In the case of friction, temperature calculation is very easy since the total temperature is 

globally constant (the flow is still adiabatic).  Hence, the knowledge of s local Mach number 

immediately translated to the knowledge of a local temperature via the formula 

 

0
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2
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1

T
T M

M



 

 

As concern the pressure calculations, we have derived the differential relation 
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dp M
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
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 
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Which can be effectively integrated as follows 
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1
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1 ( 1)
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p

p M

dp M
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p M M





 
 

   



 

In the above, the symbol p denotes the pressure of the gas in (real or hypothetical) critical 

section of the flow. 
 

The integral in the right-hand side can be calculated analytically. The final results is 

 

2

1 1
( )

2 ( 1)

p
M

p M M








 
     (*) 

 

Again, it is a common “tradition”  to use the ratio of stagnation pressures rather than local 

pressures. The following operation brings  a desirable result 
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isentropicformulaisentropic
for Mfor Mfor M
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
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In the explicit form               
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