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Introduction

Aim:
Development of an uncertainty quantification method
based on 2nd order sensitivities
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Motivation

The most broadly used approach for modeling structural and flow
problems is fully deterministic. Simulations are led for a strictly
specified inputs, such as

I operational conditions
F loads
F pressures
F free-stream parameters

I geometrical data
F airfoil shape
F product dimensions
F sheet metal thickness

Assumption: inputs remain the same for every manufactured
product
Result: Value of the objective (lift force, temperature distribution)
corresponding to the specified, model conditions and perfectly
manufactured product.
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Motivation

Real life scenarios:
I every product will be slightly different from the designed one and

between each other due to
F manufacturing tolerances
F element wear-off

I variability of operational conditions is unavoidable due to
F existance of random environmental perturbations, e.g. ground

vibrations, wind gusts
F inaccurate in-flight measurements (preserving Mach number, AoA)

One has to incorporate uncertainty management into the design
process.
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Motivation
State-of-the-art

safety factor
6σ approach – minimize the chance for a failure

I 5 uncertain steps
I 3σ –> p(failure)= 0.995
I 6σ –> p(failure)= 0.999999995

Figure: Gaussian PDF
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Motivation

Research:
Based on statistical parameters of inputs (mean, variance, pdf)
compute statistical parameters of outputs (mean lift force/pressure
drop)
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Figure: Input - airfoil thickness PDF, Output - lift force PDF
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UMRIDA Project

Uncertainty Management for Robust Industrial Design in Aeronautics

7th Frame Programme EU Project
Consortium of 21 partners from both academia and industry
Aim:
Analyze >10 uncertainties in 10 hours on 100 cores
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UMRIDA Project

Tasks:
Uncertainty Quantification (UQ)

I evaluate statistical parameters (e.g.: mean, variance, kurtosis)
Robust Design Optimisation

I optimization under uncertainties (e.g.: minimize variance)
Inverse Robust Design

I determine input uncertainties based on defined requirements
on the system performance

. . . and everything in a multi-objective framework
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UMRIDA Project

Uncertainty Quantification Methods:
Non-intrusive – CFD solver treated as a black-box

I Multi-level Monte Carlo
F run large number of independent, deterministic simulations
F compute statistical quantities

I Surrogate Models
F run numerous, parallel simulations
F perform polynomial expansion of a solution

Intrusive – solver code manipulations
I Method of Moments

F Taylor series expansion of statistical quantity
F evaluation of derivatives
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UMRIDA Project
Uncertainty Quantification subjects:

operational
geometrical

Typical UQ procedure for geometrical uncertainties

Geometrical uncertainties

Continuous uncertainty field on body surface

Discretization with CFD meshes

Large number of correlated uncertainties

Set of uncertainties too large to be analyzed in reasonable time

Need of reduction
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Method of Moments

Let us assume
f – objective (lift, drag force)
x – geometrical parametrization
ζ – uncertainties, random variables

Mean value – Taylor series expansion:

E[f (x + hζ)] =

E
[
f (x) + hζi

∂f
∂xi

+
1
2

h2ζiζj
∂2f
∂xi∂xj

+ o(h3)

]
= f (x) + h

∂f
∂xi

E [ζi ] +
1
2

h2 ∂2f
∂xi∂xj

E
[
ζiζj
]

+ o(h3)

= f (x) +
1
2

h2 ∂2f
∂xi∂xj

E
[
ζiζj
]

+ o(h3)
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Method of Moments
Proposed method

Cut-off at 3rd order term

E[f (x + hζ)] = f (x) +
1
2

h2 ∂f
∂xi∂xj

Cij + o(h3)
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Method of Moments
Proposed method

Cut-off at 3rd order term

E[f (x + hζ)] = f (x) +
1
2

h2 ∂f
∂xi∂xj

Cij

+ o(h3)

Covariance matrix
measurements
assumption
simplified model

Reduction in CPU cost and memory on covariance matrix
Highly correlated nodal uncertainties

I Dense covariance matrix
I Low Rank Approximation

Uncorrelated nodal uncertainties
I Sparse covariance matrix
I Might be need to analyze larger number of modes to preserve

accuracy
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Method of Moments
Proposed method

Cut-off at 3rd order term

E[f (x + hζ)] = f (x) +
1
2

h2 ∂f
∂xi∂xj

Cij

+ o(h3)

Hessian matrix
Large number of uncertainties
Expensive construction of a full matrix
Reduction techniques
Select several good base vectors to represent the full problem
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Method of Moments
Proposed method

E[f (x + hζ)] = f (x) +
1
2

h2 ∂f
∂xi∂xj

Cij

Properties
Choose representatives w.r.t. largest eigenvalues

HijCij = HijCji =
∑

i

Aii =
∑

i

λi

Hv = λC−1v

No need to construct full Hessian matrix
Requires only vector-by-hessian multiplication (power method)
Inexpensive vector-by-hessian multiplication – cost proportional
to primal iteration (tangent-on-reverse)
Accuracy and cost depend on number of analyzed modes
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How to efficiently compute
sensitivities in CFD?
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Sensitivity computation – gradient

Finite Difference Method – simple approach
for each parameter solve an additional primal problem J(x + h)

∂J
∂x

≈ J(x + h) − J(x)

h

Adjoint method
developed in ’70s for the structural and optimal control problems
nowadays commonly used also in CFD simulations
cost of full gradient computation proportional to one primal
iteration
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Sensitivity computation – gradient
Let us assume

u – flow problem solution
α – set of design parameters
R(u, α) – flow equations (Euler, RANS)
J(u, α) – objective function to be optimized (lift/drag force)

Optimization under constraints (functional analysis) – Augmented
Lagrangian

I(u, α) = J(u, α) − λT R(u, α)

Under some assumptions:

dI(u, α) =
∂J
∂u

dU +
∂J
∂α

dα− λT
(
∂R
∂u

dU +
∂R
∂α

dα
)

dI(u, α) =

(
∂J
∂u

− λT ∂R
∂u

)
dU +

(
∂J
∂α

− λT ∂R
∂α

)
dα
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Sensitivity computation – gradient

Adjoint method splits the formula into two parts corresponding to flow
and parametrization

dI(u, α) =

(
∂J
∂u

− λT ∂R
∂u

)
︸ ︷︷ ︸

flow variables

dU +

(
∂J
∂α

− λT ∂R
∂α

)
︸ ︷︷ ︸

design parameters

dα

If the adjoint equation is satisfied(
∂R
∂u

)T

λ =
∂J
∂u

then the gradient of the objective w.r.t. parameters is equal to

dI(u, α)

dα
=
∂J
∂α

− λT ∂R
∂α
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Sensitivity computation – gradient

Adjoint equation:
(
∂R
∂u

)T
λ = ∂J

∂u

does not depend on the parametrization
its solution λ is a sensitivity of the objective on adding a local,
nodal source at given point
cost is proportional to one iteration of implicit solver ∂R

∂u ∆u = −R

Gradient equation: dI
dα = ∂J

∂α − λT ∂R
∂α

depends only on the design parameters
very cheap
for a shape optimization number of parameters is proportional to
number of surface nodes – o(N2) with a complexity of the flow
problem – o(N3)
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Sensitivity computation – 2nd order

Hessian matrix computation
Extension of adjoint method
Required only multiplication by vector
Cost of one multiplication proportional to solving one tangent and
one adjoint equation
Total cost proportional to number of analyzed directions, not
number of parameters
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Sensitivity computation – 2nd order
Procedure for hessian multiplication

1 Solving primal equation (Euler, Navier-Stokes)

Ri(u) = 0

2 Solving adjoint equation (J - objective)

∂Ri

∂uj
vi = − ∂J

∂uj

3 Gradient computation

d
dαk

J =
∂J
∂αk

+ vi
∂Ri

∂αk

4 ...
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Sensitivity computation – 2nd order
Procedure for hessian multiplication (cont.)

4 For each direction β
1 Solving tangent equation

∂Ri

∂uq
bq = −βp

∂Ri

∂αp

2 Solving adjoint equation

∂Ri

∂uj
ai = −

[(
bq

∂

∂uq
+ βp

∂

∂αp

)
∂

∂uj
(J + viRi )

]
3 Multiplication of Hessian by given β

βp
d2

dαk dαp
(J) = ai

∂Ri

∂αk
+

(
bq

∂

∂uq
+ βp

∂

∂αp

)
∂

∂αk
(J + viRi )

Considering β as versors, one can construct full Hessian matrix
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Sensitivity computation – 2nd order
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Sensitivity computation – 2nd order

State equations R(u) is nonlinear, thus a numerical differentiation
technique is required:

Finite Difference Method
I easy implementation
I very efficient when applied locally
I no special memory requirements
I inaccurate

Automatic Differentiation Tools (AD)
I exact, even for highly nonlinear cases
I higher memory requirements (operator overloading)
I ability to use depends on the solver
I in most cases difficult to implement in parallel
I Tapenade (INRIA), DCO (RWTH)
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Numerical results

Flow2/RED solver:
in-house tool developed by Jerzy Majewski
Residual Distribution Scheme

I Multidimensional upwind
I Lower numerical diffusion compared to FVM
I Residuum computed locally inside cell

Equations: Compressible Euler, Navier-Stokes, RANS
Common turbulence models: Spalart-Allmaras, k -ω
2D/3D, unstructured meshes
C++ Object-Oriented
Parallelization: MPI, PETSc, Domain decomposition
Good scalability
Verified accuracy (ADIGMA, IDIHOM)
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Numerical results

Flow2/RED extension:
Mesh deformation
Optimization (Adjoint method)
Uncertainty Quantification
Source transformation (Tapenade)
Verification and validation
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Numerical results
BC-03 UMRIDA Test-case

Geometry: DLR-F6
Euler equations
Transonic conditions: M = 0.76, AoA = 1◦

Objective: lift force

Figure: Solution - distribution of Mach number
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Numerical results – parametrization
Radial Basis Function
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Numerical results – parametrization
Different distributions available

leading/trailing edge
maximum variance

Figure: Leading and trailing edge Figure: Max. variance distribution
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Numerical results – parametrization
Possible freezing of specific geometry regions

Example with fixed fuselage and nacelle

Figure: Variance distribution on surface
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Numerical results
Max. variance distribution – 1D example
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Numerical results

Figure: Variance distribution Figure: RBF distribution
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Numerical results – Uncertainty Quantification

Figure: RBF Distribution

Figure: Objective value

Hessian validation against:
Kriging
Polynomial fitting

Small differences – 3%

Which one is the most
accurate?
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Numerical results – Uncertainty Quantification

Objective, gradient and hessian investigation on meshes
with different element size

Mesh (# nodes) 60k 200k 300k 400k
Objective rel. error -0.24976 -0.09120 -0.05415 ref.
Gradient rel. error 0.55138 0.30017 0.16180 ref.
Hessian rel. error 11.09583 7.40420 4.53642 ref.

Error decreasing on finer meshes
Relatively high errors – slightly different parameterization across
meshes
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Numerical results – Uncertainty Quantification
Hessian - Eigenvalues spectrum

Mesh size: 300k nodes
Parametrization: 40 RBF (max. variance distribution)

Figure: Generalized eigenvalue solution
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Numerical results – Uncertainty Quantification
Hessian - Eigenvalues spectrum

Mesh size: 300k nodes
Parametrization: 40 RBF (max. variance distribution)

Figure: Number of modes required for 99% representation of 2nd order
information as function of parametrization correlation radius
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Objective — Mean-value

Comparison of mean-value estimation

E [f (x + hζ)] ≈ f +
1
2

h2 ∂f
∂xi∂xj

Cij︸ ︷︷ ︸
∆f

Method ∆f
Monte Carlo 0.4026461

Kriging 0.4025724
Our method 0.3514531

Kriging (2nd order) 0.3489399

Relatively high error in objective correction (∆f ) caused by Taylor
series cut-off
Good agreement with Kriging (based on hessian)
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Resulting eigenvectors

Orthogonal base of eigenvectors
Our method gives a convienient base for the UQ problem

I Diagonal covariance matrix — independent uncertainties
I No cross-terms in 2nd order derivatives — less coefficients in

polynomial approximation

Eigenvectors – geometry deformations that produces the most
mean-value shift caused by uncertain input parameters
Resulting shape can be an important information in the design
process.
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Resulting eigenvectors

Base shape with parameters location

M. Wyrozębski March 24th, 2017 36 / 41



Resulting eigenvectors

1st Eigenvector
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Resulting eigenvectors

2nd Eigenvector
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Resulting eigenvectors

3rd Eigenvector
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Resulting eigenvectors

4th Eigenvector

M. Wyrozębski March 24th, 2017 36 / 41



Resulting eigenvectors

5th Eigenvector
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Resulting eigenvectors

6th Eigenvector
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Resulting eigenvectors

7th Eigenvector
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Summary

Conclusions
Uncertainty Quantification

I Hessian successfully validated
I Proposed UQ method works well for presented case
I Computational cost is always less than pure hessian analysis and

KLE providing the same accuracy level
I Good approximation of objective mean-value
I Method provides valueable by-products for further UQ investigation
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Summary

Future work
Publication

I Monte Carlo – large number of simulations
I Compare results with Active Subspace

PhD Thesis
I Implement iterative method for generalized eigenvalue problem
I Compare results for variance

Other
I Application to viscid/turbulent cases
I Implement different parametrizations (e.g. elastic/Laplace)
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Thank you for your attention!
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