Faculty of Power and Aeronautical Engineering, IAAM, Division of Fundamentals of Machine Design

ENGINEERING GRAPHICS Exercise 1S Student's name \qquad

FUNDAMENTAL VIEWS - POINT, LINE AND PLANE

PROBLEMS														
1	2	3	4	5	6	7	8	9	10	11	12			

if $\mathbf{e}(\mathbf{M}, \mathbf{T})$ then $\mathbf{e}^{\prime}\left(\mathbf{M}^{\prime}, \mathbf{T}^{\prime}\right)$ and $\mathbf{e}^{\prime \prime}\left(\mathbf{M}^{\prime \prime}, \mathbf{T}^{\prime \prime}\right)$

Faculty of Power and Aeronautical Engineering, IAAM, Division of Fundamentals of Machine Design

ENGINEERING GRAPHICS Exercise 1S Student's name
$\mathbf{n} \supset \mathbf{M}$ and $\mathbf{n} \perp \boldsymbol{\pi}_{1}$
if $\mathbf{M} \in \mathbf{n}$ and $\mathbf{n} \perp \boldsymbol{\pi}_{1}$ then $\mathbf{M}^{\prime}=\mathrm{n}^{\prime}$
$\mathbf{c}(3,4)$ and $\mathbf{c} \| \boldsymbol{\pi}_{2}$ (frontal)
if $\mathbf{c} \| \boldsymbol{\pi}_{2}$ then $\mathbf{c}^{\prime} \| \mathbf{x}_{12}$
$\mathbf{p}(1,2)$ and $\mathbf{p} \| \boldsymbol{\pi}_{1}$ (horizontal)
if $\mathbf{p} \| \boldsymbol{\pi}_{2}$ then $\mathbf{p}^{\prime \prime} \| \mathbf{x}_{12}$

1. Draw a horizontal line $p ; K \in p$

Division of Fundamentals of Machine Design

3. Find missing views of points A and B assuming that $A \in a, B \notin a$

X_{12}

4. Find missing views of a frontal line c and point L, assuming that line c is defined by points K and L

5. Find a missing view of point M, assuming that $M \in n$

6. Find missing views of line g and point H, assuming that lines g and h are parallel, $\mathrm{g} \| \mathrm{h}$, and points $\mathrm{G} \in \mathrm{g}, \mathrm{H} \in \mathrm{h}$

$$
\begin{aligned}
& \beta(A, D, M) \\
& \beta(D, e) \\
& \beta(e, g) \text { where } A=e \cap g \\
& \beta(e, h) \text { where } e \| h
\end{aligned}
$$

If $\mathbf{e} \| \mathbf{h}$ then (according to the condition of parallelity) $\mathbf{e}^{\prime} \| \mathbf{h}^{\prime}$ and $\mathbf{e}^{\mathbf{~} \| \mathbf{h "}}$

$$
\text { If } A=e \cap g \text { then } A^{\prime}=e^{\prime} \cap g^{\prime} \text { and } A^{\prime \prime}=e^{\prime \prime} \cap g^{\prime \prime}
$$

8. Specify which points belong to lines a and b, knowing, that a and b are skew lines, $a \cap b=\phi$

VIEW OF PLANE IS DETERMINED BY PROJECTING ALL THE ELEMENTS DEFINING THAT PLANE

9. Define an oblique plane $\alpha(A, b)$
10. Define a vertically-projecting plane $\alpha(A, b)$

x_{12}	
	$A^{A^{\prime \prime}}$

Faculty of Power and Aeronautical Engineering, IAAM, Division of Fundamentals of Machine Design

If $\gamma(B, n)$ and $\mathbf{n} \perp \pi_{1}$ then $\gamma(B, n) \perp \pi_{1}$. γ is the horizontally-projecting plane.

ENGINEERING GRAPHICS
Exercise 1S Student's name \qquad

If $\boldsymbol{\varepsilon}(\mathbf{D}, \mathbf{e})$ and $\mathbf{e} \perp \boldsymbol{\pi}_{2}$ then $\boldsymbol{\varepsilon}(\mathbf{D}, \mathbf{e}) \perp \boldsymbol{\pi}_{2}$. $\boldsymbol{\varepsilon}$ is the vertically-projecting plane.

11. Draw a triangle $\triangle A B C$ on plane $\alpha(k, l)$, where vertices A, B, C belong to lines k and I

12. Draw an oblique quadrangle $A B C D$ on plane $\alpha(a, b)$, where $a \| b$

x_{12}

