Faculty of Power and Aeronautical Engineering, IAAM, ENGINEERING GRAPHICS Exercise 2S Division of Fundamentals of Machine Design Student's name \qquad

PARALLEL AND PERPENDICULAR RELATIONSHIPS: LINES AND PLANES

PROBLEMS									
13	14	15	16	17	18	19	20	21	22

Faculty of Power and Aeronautical Engineering, IAAM, ENGINEERING GRAPHICS Exercise 2S

Division of Fundamentals of Machine Design

13. Complete missing views of points \mathbf{D} and \mathbf{M} belonging to a given vertically-projecting plane $\boldsymbol{\alpha}$
14. On the given plane $\gamma(1, m)$ draw two lines: a horizontal line \mathbf{p} and an oblique line \mathbf{b}

15. Define an oblique plane δ using a horizontal and a frontal line. Point K should belong to this plane, $K \in \delta$. Solve the problem for:

16 a) $K=p \cap c$

16. c) $\quad K \notin p ; K \notin c$

Faculty of Power and Aeronautical Engineering, IAAM, ENGINEERING GRAPHICS Exercise 2S Division of Fundamentals of Machine Design \qquad
17. Find the missing view of the quadrangle PQRS, assuming, that it belongs to the given plane $\boldsymbol{\beta}(\mathbf{P}, \mathbf{f})$.

Faculty of Power and Aeronautical Engineering, IAAM, ENGINEERING GRAPHICS Exercise 2S Division of Fundamentals of Machine Design \qquad
18. Find the missing view of segment $\mathbf{E F}$ assuming that $\mathbf{E F} \| \varphi(\mathbf{M}, \mathbf{s})$.

19. Define an oblique plane $\boldsymbol{\alpha}$ parallel to the plane of triangle KLM. Point \mathbf{A} should belong to plane $\boldsymbol{\alpha}, \mathbf{A} \in \boldsymbol{\alpha}$

Faculty of Power and Aeronautical Engineering, IAAM, ENGINEERING GRAPHICS Exercise 2 S Division of Fundamentals of Machine Design \qquad

The point \mathbf{J} is the point of intersection of the plane $\boldsymbol{\alpha}$ pierced by the straight line d, what can be marked as;

$$
\mathrm{J}=\alpha \| \mathrm{d} .
$$

20. Draw line $\mathbf{b}, \mathbf{G} \in \mathbf{b}$, perpendicular to plane $\boldsymbol{\delta}(\mathbf{Z}, \mathrm{j})$. Find the point of intersection \mathbf{Q} of line \mathbf{b} and plane δ.

21. Draw line n, perpendicular to plane $\boldsymbol{\beta}(\mathrm{p}, \mathrm{c})$. Point \mathbf{L} should belong to line $\mathbf{n}, \mathbf{L} \in \mathbf{n}$.

Faculty of Power and Aeronautical Engineering, IAAM, ENGINEERING GRAPHICS Exercise 2S Division of Fundamentals of Machine Design \qquad

If $\mathbf{n} \perp \boldsymbol{\delta}(\mathbf{c}, \mathbf{p})$ then $\mathbf{n}^{\prime} \perp \mathbf{p}^{\prime}$ and $\mathbf{n}^{\prime \prime} \perp \mathbf{c}$ ".
22. Draw line \mathbf{n} perpendicular to plane $\boldsymbol{\alpha}(\mathbf{D}, \mathbf{e})$. Point \mathbf{H} should belong to line $\mathbf{n}, \mathbf{H} \in \mathbf{n}$.

