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Course Title: FINITE ELEMENT METHOD |
Type of course: undergraduate, graduate

Format Lectures: Laboratory: Private study:
(Teaching methods)| 2hours/week 1lhour/week 2hours/week

Lecturers (course leader): Grzegorz Krzesiski

Objective: To supply theébasic knowledge and skills required for understagdind simple practical applications of FEM

Contents (lecture’s programme):

1. INTRODUCTION TO FINITE ELEMENT METHOD

. APPLICATIONS OF FEM

. FINITE DIFFERENCE METHOD (FDM), BOUNDARY ELEMENT METHOD (BEM) AND FINITE ELEMENT METHOD (FEM)
. BEAMS. RITZ-RAYLAYGH METHOD and FINITE ELEMENT METHOD
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. TRUSSES AND FRAMES

. TWO AND THREE- DIMENSIONAL LINEAR ELASTOSTATICS

. CST TRIANGULAR ELEMENT

. 8-NODE QUADRILATERAL ELEMENT . NUMERICAL INTEGRATION

Computer labintroduction to practical problems of FE modelingANSYS/ 2D and 3D linear stress analysis/ Statialysis of simple shell structure
Discretization error and adaptive meshing
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Abilities: After completing the course the students will bleab build simple FE models and will know the gibse applications and
limitations of the method in mechanics of strucsure

Assesment methodAssesment based on tests and results of compbterork (reports).
Practical work: Project/laboratory classes, where students wildbamd analyse the results of simple FE modeldasttie structures

Recommended texts (reading):
[1] Huebner K. H., Dewhirst D. L., Smith D.E., Byrom@.: The finite element method for engineers, JeW& Sons, Inc., 2001.

[2] Zagrajek T., Krzesinski G., Marek P.: MES w mecharkonstrukcjiCwiczenia z zastosowaniem programu ANSYS, Of. Wyd 005

[3] Bijak-Zochowski M., Jaworski A., Krzesski G., Zagrajek T.: Mechanika Materiatdw i Konscji, Tom 2, Warszawa, Of. Wyd. PW, 2005
[4] Saeed Moaveni: Finite Element Analysis. Theory Apglication with ANSYS, Paerson Ed. 2003

[5] Cook R. D.: Finite Element Modeling for Stress A&, John Wiley & Sons , 1995

[6] Zienkiewicz O.C., Taylor R.: The Finite Element Med.- different publishers and editions
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1. INTRODUCTION TO FINITE ELEMENT METHOD

The FEM is a numerical procedure that can be usatlie a large class of engineering problems diofyymechanics of structures, heat transfer,
electromagnetism, fluid flow and coupled fieldslpems (e.g. electro-thermal).
The simplest description.

The method involves dividing the geometrical moafethe analysed structure into very small, simpécgs calledinite elements,connected by
nodes. The behaviour of of the element is describe@ddequate physical laws. An unknown quantitg.(éemperature, displacement vector,
electrical potential) is interpolated over an ed@mnfrom the nodal values using specially definetympomials (called shape functions). The
procedure leads to the set of simultaneus algekrpiations with the nodal values being unknown.

During the solution process the nodal values (D@¥grees of freedom of the model) are found. Thiemtaresting quantities ( strains, stresses)
are calculated within the elements. Finally theitissmay be presented in the required graphicahf@the typical form of presentation is a contour
map)
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FEM was developed in 1950's for solving complexopems of stress analysis - mainly for aeronautitdistry. The development of the method

was connected with the progress in digital compsuaeid numerical techniques.
Today the method is considered as the most powantllysis method for problems described by padifédrential equations.

3D finite elements
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FEM is one of the approximate methods for solviagtmuous problems of mathematics and physics
Approximate methods — flow chart
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Discretization of the continuous problem — numérngsdimation of the integral
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BASIC STEPS IN THE FINITE ELEMENT METHOD (FE modeli ng)
Preprocessor (preprocessing phase)
In the preprocessing phase the mathematical problem is described and presented in the numerical, discrete form:

Steps:
Description of :
the analysed domain (geometry of the anabjsjisct)
the material properties
the boundary conditions (loads and constraints)
the meshing (dividing the domain into the fnelements of the required density distribution)

el

.

i

s

FE model of the bolted joint of the high pressure vessel
entire connection, representative part of the structure and its discretization, FE nodes with load symbols
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Processor (solution phase)

In this phase the user of the FE program defines the type of analysis (static, linear or nonlinear, dynamic, buckling ...... ) and other
details describing the method of calculations and solution process.
The FE program performs the calculations and writes the results in the adequate files.

Postprocesor

In this phase it is possible to present the interesting results in different forms: plots, graphs, animations, listings etc.
The user can create contour maps, tables, graphs and generate the reports.

ANIY3 5.5.3
FEE 1 zZ001

00:55:54

PLOT WO. &
NODAL SOLUTION
STEP=3

SUB =2

TIME=3

HEQV (AVE)

PowerGraphics
EFACET=1
AVREZ=Mat
DMx =8.53359
SMN =.Z013%a
aME =319.454
201326

ACOE00EN

Von Mises equivalent stress distribution (MPa). Contour map
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The results of FE analysis
Deformed model compared to undeformed structure

Displacement vector (ux, Uy , Uz )
Stress state components within the model

{ox 0y ,0z Txy » Tyz ,Ixz }
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Strain state components

& & & Vg Wz Ve }
Principal stresses .

Equivalent stress distribution according to an arbitrary criterion
Any other entity defined by the user (ANSYS — APDL commands)
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2. APPLICATIONS OF FEM

Finite Element Analysis of Critical Central Connection Elements
of W7-X Stellator Coil Support System

The objective of Wendelstein 7-X project is thdlater-type fusion reactor. In this device plasrhamnel is under control of magnetic field comingnfirmagnet
system of complex shape, made of 70 supercondumbitgysymmetrically arranged in 5 identical seasioEvery coil is connected to central ring witlotw
extensions which transfer loads resulting fromtetgcagnetic field and gravity.

During operation at a service temperature (ST)Kothe superconducting coils of the W7-X magneteysexert high electromagnetic loads. Therefore, the
detailed analysis of the coil - central supportramstions, the so called Central Support Elemen&&(Cis a critical item for W7-X. Each coil is faged to the
CSS by two central support elements (CSE).

The aim of this work was to analyse mechanical iela of the bolted connections using detailed Biltd element models (including bolts , washerddae
etc). The Global Model of the structure, analysgd@fremov Institute in Russia, provided informatigmout the loads acting on the connections.

A | i’..r_ N ﬂ,j‘ r I

Design analyses of the support structure elements. nonlinear simulations including contact with friction, plasticity,assembly stresses, submodelling technique
and using parametric models (14 bolted connections) . The work performed for Institute of Plasma Physics, Greifswald , Germany.

The results of the numerical simulation help to check the magnitudes of displacements and stresses for different loading scenarios and
some modifications of the considered structures.
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material 1--- 1.4429 steel:  shim, wedges, ring,
1250 spherical washers
interface plate AN
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Sress-strain curve for material 1 (1.4429 steel) corresponding to the temperature

293 K (red graph), 77K (violet), 4K (blue)
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Structural analysis and design of the "KLAUDIA" fli ght simulator

The FE model of the initial platform design haswad the
structure to be too flexibile. To find better sodut the
simplified FE model has been built, easy for madifions.
The model has enabled quick verification of newospts. The
final detailed FE model has confirmed the improvetrad the
design. The fully nonlinear FE submodels have Wadit to
check the stress level in the main joints. Vibnmatio
characteristics (natural frequencies and mode shapiethe
structure have been found

The FE model was built using shell, solid, beam, rsa and link
elements The project was done forMP-PZL Aerospace
Industries , Poland

Modified (|mproved) design

)_X
submodel of the joint
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FE analysis of thin-walled elements' deformation
during aluminium injection moulding

Numerical simulations have been performed to model the process of filling the mould by hot aluminium alloy. The analysis has enabled
improvements of the element stiffness diminishing geometrical changes caused by the process. Fluid flow simulation with transient
thermal analysis including phase change have been performed, followed by the structural elasto-plastic calculation of residual effects.

The project performed for Alusuisse Technological Center, Sierre, Switzerland.

>

Temperature distribution (cooling effect) and displacements

FE model Velocity field during J
Injection Residual stress distribution

FE model of the die

xl

Velocity and temperature distribution
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FE analysis of a high pressure T-connection

The aim of the analysis was to find out stress amdin distribution in a T-
connection caused by high internal pressure (28p@nd temperature gradients.
External cooling, assembly procedure (screw pretehscontact and plasticity
effects have been included. The project done foLENRpetrochemical company

FE model

Von Mises stress
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FE analyses of rotor disks

The aim of the analysis was to asses the right shape
details of the rotor to avoid high stresses and to find its

vibration characteristics. MPa
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Von Mises stress distribution

Contact pressure between the shaft

The mode shape for the natural frequency and the rotor disk

of 2203Hz
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Thermo-electrical analysis of aluminium reduction cells
The analyses were performed to find temperature field and The influence of geometry, material properties abdundary
electrical potential distribution inside the reductant cell used conditions on the phenomena that take place inbdth and liquid
in the process of aluminium production. The project done aluminium is investigated. The analysis enableddwect the design
for Alusuisse Technological Center, Sierre, Switzerland. and to improve efficiency of the processes.

< i Anode and cathode blocks

FE model (quarter of the cell)

L ‘ o
zon .B76667
400 1.169
500 1.461
700 1.753
800 2 33
’ < T
< oo Electric potential distribution

Temperature distribution
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FE analysis of the turbine blade locking part defec  ts (imperfections)

Experiments show the presence of defects like surface scratch, or micro-crack in the region of blade locking part of the turbine
disks. Such imperfections may result in crack initiation and propagation. A segment of the turbine disk together with a blade has
been modelled (including contact). Half-elliptical crack has been introduced in the sub-model. Stress intensity factors and Rice
integral values have been calculated.

FE model Von Mises stress distribution
in the vicinity of the crack
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FEM Analysis of the Winch Frame and Boom of the sno  w groomer

The aim of the analysis was to check the stiffness and stress level of the new design of the
structure. Numerical model consisted of FE shell elements supplemented by brick, beam,
link and mass elements. In regions of special care sub-models were used involving contact
elements. The results suggested essential changes of design. The project done for
PLUMETTAZ S.A., Bex, Switzerland

Displacements

AN

Initial model

g \

Modified design

Von Mises stress

FE model
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CAD/CAE study of a New Design of Truck Frame
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Finite element method in bone-implant system strertg analysis

The three-dimensional FE models of the living tissues-implant systems can deliver the valuable information about
mechanisms of stress transfer and healing processes after the orthopaedic surgery. In the presented example some different variants
of the hip stem were considered to find the best solution, which should reduce stress concentration within the bone tissues. The model
of the femur was built using the data obtained from CT scans. The considered load corresponds to one leg stance of a man weighting

800N.

trabecular bone
cement

stem

cortical bone

contour points from the CT scans

Finite element model of the femur endoprosthesis : body weight BW=800N, F1=2.47 BW, F2=1.55BW, a1=28°, a2=40°
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Von Mises Equivalent stress (MPa)
FE model and selected results of numerical simulation of mandibular ostheosynthesis
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3. FINITE DIFFERENCE METHOD (FDM) BOUNDARY ELEMENT METHOD (BEM)

AND FINITE ELEMENT METHOD (FEM)

Draft presentation for solving Poisson’s equatioin 2D space

Poisson's equation is a partial differential equratvith broad utility in electrostatics, mechanieabjineering and theoretical physics.

°u 0%
—+—+f(X,%)=0
X2  OX: 06,%)

For vanishing f, this equation becomes Laplacasgon.

We consider a Dirichlet boundary conditionlgrand a Neumann boundary conditionIgn

Xo A
A No
n
Ny
u(x) =u, ,  xgr, Iy
_ou(x) _ < Iy
CI(X)— an =0y Xqu

X1

where @ and @ are given functions defined on those portioneftioundary.
In some simple cases ( shape of the doraamd boundary conditions) the Poisson equationimeagolved using analytical methods.



FINITE ELEMENT METHOD 1 - lecture notes Pazfe of 89

Finite Difference Method

Finite-difference method approximates the solutbrdifferential equation by replacing derivativgoeessions with approximately equivalent
difference quotients. That is, because the firgivdgve of a function f (x) is, by definition,
+ h) - _
£(@) = limy fla+ 2 fla)
then a reasonable approximation for that derivativald be to take

a1 @R = £
h (difference quotient)
for some small value of h. Depending on the appboathe spacing may be variable or held constant.
The approximation of derivatives by finite diffecas plays a central role in finite difference metho
In similar way it is possible to approximate thestfpartial derivatives usingforward , backward or centraldifferences

y A

Ui k+1 U = U()ﬂ ’ yk)
Ui-1,k Ui qu‘kg‘V ou Au U,,—U
Y, o] Q) MLt Tl
ul,k-;l. g‘ y y g
b) @:&_ulk_ulk—l’
oy Ay g
ou _ Au ul k+1 ul k-1
Y, ©) =
0 oy Ay 29
—
XO’ JO """""XIO'""' =T TTTT O TTTTTNT Y g ) """"Xi" X
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Differences corresponding to higher derivatives

2 2 _
0u _ A< _ Uigy = 205+ Uy

4 4 _ _
, 0'u _Au _ Uss 4ui+1,j +6u, i 4Ui—1,j tU_,,;

M A h? u_ A 4 4
0°u _ AU _ U —2u, tU ox'  Ax h
ay’  Ay? g° '

Using the finite differences we can approximategagial differential equation at any point, (%) by an algebraic equation .
In the case of Poissons equation:

1 1
F(uiﬂ,i -2y, +Ui—111)+?(ui 1T 2t J—1)+ f ()ﬂ ’yj) =0
If h=g i f =0 (Laplace equation) we get
C U tUL U U
ui,j = .
4

N grid points in the domaif , N equations, N unknows

[Al{u}={b}

discrete form of boundary conditions

a) b)
/ /] / In the case of irregular boundary shape
8 a) assumed, = hd, *+0u, instead ofu =u,
2 /1 0 2 of |1 h+d

7 : A : _hu,-du, . _
h b) assumedl, =————= instead ofu=u
/ /I 1 h _5 0

J /
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Boundary Element Method

Uses the boundary integral equation ( equivaletiteéd?oisson’s equation with the adequate b.c.)

odu(X)

e(E)u(E) ==[u(a (&, x)dr 9+ [ ==

U(E R)dr (%) + [ £ (U’ X)AR(X)

. |

c(&) - coefficient equal to 1/2 on the smooth contdunside the domaif

Q >
Kernel functions u’=(& i):iln[—l) )
2 \r r
r a
r =00 - &)+ (- )% r, :
q'(é,X) = ou”(&,X) Fuulg=T
’ on
0 0 Xy
D:aiﬁll-{-ai ,
a aXZ ar _—Xi _f' =_L
i AL ATD) o r T
2mr?

The boundary integral equation states the reldigweenu(X) and its derivative in normal directiag(X) =$
n

on the boundary.
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The numerical approach
1. Discretization of the boundary (LE boundary elemets)
2. Approximation of u(X) andg(X) on the boundary
(e.g. u(R, q(R) constant on boundary elements)
3 . Building the set of linear equations

i=r, 1=

ZUR) =Y. JU'(R,R)a(R)Ar = [ a'(R Ru(R)dr

+[f®UuAR, )R i=12,.LE

%u(e) :fui?m(a)—iq?mmﬂ fi, i=1,2.LE. f, = [ f (X)u"(R,X)dQ(X)

1 O O
Sl =[u" e -[Q b +{1}.
LE linear equations with the unknowsP,) (if the pointP, e ') orq(R) (if B eT')

Finally: [Al{ v}={b}
The solution {y} represents unknown boundary valoksi and qg.
The matrix A — full, unsymmetric
4. Solution - provides complete information about the functigiX) and its derivativeg(X) on the boundary
Boundary Element Method reduces the number of onvkiparameters (DOF of the discrete model) mpmarison to FDM and FEM ( domain

methods).
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Finite Element Method

nodes

Equivalent problem of minimising of the fuctional:

2 2
du ou X
[(a} +(a_xj -2f (xl,xz)u}dQ—rj; qqudr,

with the Dirchlet b. c.

I(u)=%f

Q

u(x) = Uy, x0Or,

1. Discretization of the solution domaiQ into element$;, i=1,LE,

connected in the nodes

Q=JQ, i

2.Approximation of function u(X) within the finite elementin the form of polynomials de

QNQ,=0 %],

U(X1, %)
LWE !
u(x, %,) = Z N; (X, XU,
=

LWE — number of nodes of the element
u,i=1,..LWE -nodal values of the approximated function

Ni(x1,%2) — shape functions

3. Discrete form of the functional

£1 au) (ou) &
I (u) DEEJI(&J J{a_xj —2f (xl,xz)u]dQ =Y [ qudr,

i=lr,

A

elements

obszar ()

kontur T"

!

X1

Xy

approximation of the
function u(x,y) over
the elemenf)
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In each element

Ou _SFON
ox T 0%
ou _SFON
ox, 4 ox,
In this way the functiondlis replaced by the function of several unknaws i = ,2,.1,LW, whereLW denotes the number of nodes of the finite
element mesh. In the matrix form :
LW
I K, Ky kg oo Ky ] U b m
1 Ky Ky Ky u, b, .
|w):EL%Jb¢% ----- WWJ K K Us _bbuwua~wWwJ b, zerone
I Ko K.y o || U By niezerowe
....1 — -
RS CRLEL)

Necessary (and sufficient) condition of the minimum

aa—l =0, i=1,...,LW. matrix: spaysymmetrical, positive defined, banded
U

Hence

[K]{U} :{b} , (+ Dirichlet b.c.)

Set of the simultaneuous equations with unknown mtal values of the investigated function.
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4. BEAMS
RITZ-RAYLAYGH METHOD and FINITE ELEMENT METHOD

Principle of minimum potential energy.
Thepotential energyof an elastic body is defined as

Total potential energy (V)Strain energy (U)- potential energy of load (wz)

In theory of elasticity the potential energy is than of the elastic energy and the work potential:

V=U-W, :qujqjdﬂ—jxiuidQ—j pudl
2(2 Q r

Q _ domain of the elastic bodf, — boundary, T;; — stress state tensofc:‘ij — strain state tensor ,

U; — displacement vector[d, — boundary load (traction), Xbody loads

The potential energy is a functional of the disphaent field. The body force is prescribed over tbkime of the body, and the traction is
prescribed on the surfade. The first two integral extends over the voluméhe body. The third integral extends over tharimary.

The principle of minimum potential energtates that,
the displacement field that represents the solution of the problem fullfills the displacement boundary conditions and inimizes
the total potential energy.

V =U -W, =min!

Total potential energy of the beam loaded by tistibiuted Ioadp[%}:
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_1| . _|
—E_EEI(V\/) dx {pwdx’

where the function w(x) describes deflection of bleam

Ritz method
1.The problem must be stated in a variational form, 3. The parameters are determined by requirement that the
as a minimization problem, that is: functional is minimized with respect &
find w(x) minimizing the functional V(w) oV - i=1 n.

2. The solution is approximated by a finite lineambination of the

[Al{a)={8

W)= a9

where adenote the undetermined parameters terRitx ]
coefficients W(X) = @ (X) .
and g¢i are the assumeaapproximation functions (i=1,2...n). ;a |
The approximate functiongi must be linearly independent
and

4. The solution provides, and the approximate solution

Hence the approximate internal forces in the beam

M, (X) = EIW'(x),
3. Finally functional V is approximated by the ftioa of n variables . ~
& T(X) = —EIW"(X).

V=V(ai, &, &, ....&)
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EXAMPLE

Find the deflection of the cantilever beam underltad p, {ﬂ} using the analytical solution of the differentegjuation and compare it to the
m

approximate solution using Ritz method with functionW(x) = a, + a,x + a,x* +a,x°.

w(x)

tr bbb b AfEd bp

Exact analytical solution

M
W(x) = |gz|(X)

Mq () =21 =%,

w(x) =0, dM:O
dx

Solution 0
W(X) = —2—(61% = 4Ix + x?)x?,
() 24El| ( )

Max. deflection w(l)= pI*>/8 EI

The approximate solutiom(x) = a, + a,x+a,x* +a,x> has to satisfy the displacement boundary condition
W(x=0)=0, W(x=0)=0.

Thus
W(X) = ax* +a,x°.
3 4

V :% (4all +12a,a,1” +12a1°%) - p(aelg ta, lz) :
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3
a—V—E(&a3 +122a4)— S 0,
08,

4
a—V—E(lz2 +243a4)—IOOI =0
0a,

_5 py? Pd

Finally the approximate solution is

2
W(X): S) pOI X2_ pO X3,
24 El 126l

~ 5 P,
M, (X) === pyl* ==X,

q( ) 12 pO 2
r — _pol
T(X) = :

(X) 5

Graphs presenting exact (bold line) and approximatédashed line ) solutions
of the cantilever beam:

displacement, bending moment, shear force

WL 102 P! 125
W(X) EJ
8.35
W(x)
/ | WK
4.427 / 125
iy 4 8.203
4
y
" |4.167
1.318/// :
1.172
0 0 3l | X
4 2 4

T() |
T(x)

| *pl

N—

N|—
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Finite Element Method approach

Approximation : local, with nodal displacements; , w. , g, and 8, as unknown parameters

‘leq 1

W,=( 3

wie) |

\/lEﬂL_ALN\\\w/;

g —
@

le

—

Simple beam finite element

Lets assume first the polynomial approximatiothwmi the element
w(é) =a, +a’25+0’3c,(2 +GI4<(3

with four unknown parameters, .

2

©,=9

4

Positive directions:
upward for translation
counter clockwise for rotation

The required new parameters : nodal displacenvantes, , 8, and 8, (degrees of freedom — DOF of the element)

N

0, W
(al =%} =1
Nodal displacement vector Are = =
q3 W2
AW, L&

W& =3 N,
w(&) =| N(&) [},
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Relation betweemr,,a,,a,,a,_andq,,q,,0;,0,

&4 =w(0)=a,, displacement and node 1
_ dw O)=a
qz_df( M slope at node 1
g=wl)=a,+al +al’+a)’l, displacement at node 2
qA:d_W(|):a2+2a3]e+m4|:_ slope at node 2
dé 0| o
In the matrix form
_ _ a
@) [1]0] 0] 0fa ol 191190
2| —
% |9 1] 9] 9 a[ | 8|2 3]-1
@ | L[]0 [|af a) |||,
@ |0 2. | 3| la,) 2111211
: : e
The approximate deflection may be presented irfidire -
2 3
Nl({) =1- 3|—2+ 2|—3 ,
2 3
a, % Nz(f)zf_zl_"-f_z’
a g e e
W(E) =|1E.82,8 2= NN, €N, €N, €)]] Pt 2 g
a, o _a¢" 8
Ny($) =375 —27%,
a, a, Ie Ie
_ g2 3
N4(§():i+f_-

2
le le

The functionsN, () are calledshape functionsof the beam element.
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N; () describes deflection of the beam element , wiggrel, and for j#i qg; =0 (see graphs).

N} N(&)
1 1

~Y

N_(¢)

2

Shape functions of a beam element

w(é) =[ N(&) [{d},.
wW(&) = N'(&) [{d}.,
W@ =N Kd..

Total potential energy of the beam element of¢hgth |,

V, =U, -W, == fw(€)dé - | pewe)ds
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U == j W’(E)W'(E)dc‘——f Lal {N}LN"{a},d

" " " " " " " "
1 1 Nl N2 Nl N 3 N 1 N 4

:EZILOIH N,’N, N,N, N,N. N2N4dg{q}e_

n n n n n n n n

(=)

3N1 N3N2 N3N3 N3N4

4N1 N4N2 N4N3 N4N4

0
le le le le
1 [NNSdE [NSNJdE [NSNJdE [N, N dE
U, =>lal.[k].{d}.. Wo=m|e .f 0
[NSNSdE [NSNJAE [NJNJdE NN de
0 0 0 0
le le le le
[NSNSdE [NS/NdE [NSNSdE NN, dg
L O 0 0 0 |
Matrix [k]e is named stiffness matrix of beam element. Aftegration
6 3, -6 3, ]
.l

l 2EI 3, 22 -3
6 -3, 6 -3
3. 12 -3

e e
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The external work done by the traction p:

W2 = [ pEOWEAE = [ pEOLN(E) J{ch, € = [| N.(&) PE)AE N,() pE)IE N,(E) pE)E N, €)p()dé [{ g}, d,

G | |
e e e e q —_ — (
We =| B8 Fe RS Fe | q2 = F | {q}. Fe —INi (&) p(&)dé
3 ’ 0
(% )
F° - equivalent nodal forces
F1=3pold 20 Fa= 7pold 20
p| Fo=polé¥ 30 Fa= -pole?/ 20
Fe=Fp=10e
Pole Pole 2 T\
2 2 2 7 e pole2 \
pole pole F2 - O,
plZ 12 _1§|2 1 5
Vrrrrrrrr i@ mee Py

Equivalent nodal forces corresponding to the constant and linear distribution of P, load
(kinematically equivalent or work-equivalent !)

Total potential energy of the beam element

Ve =U. —W, :%LqJe[ k]e{ CI} e_LqJe{ F} e.

1x4 4x4 4x1 x4 4x1
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The conditions for finding the minimum of.V

oV
aqie =0, i=1,2,3,..
6 ge _6 39 rqlx rle
2Bl |3, | 27 [ -3, | I ||%| _|FR
3 > = >
[k]e{q}e:{F}e- |83 _6 _38 6 _3e q3 F3
A [ 17 1-3, ] 27 [(d), (R,

Set of linear equations for one element model efdtnsidered cantilever beam:

I:1

6[a[-6[3](0] | F
26113 | 2% | -3 | 1”7 |]O| _| p
*l-6|-3a] 6 [-3]||a| | 2
a1 |-ala%||a |-p?
12
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Constraints ;=0 and =0 may be taken into account by

I:1
the transformation of the set of equation to thmf{)A] 22 :{b} or by reductionof the problem to
3
a,
2EI g, -dg,)=2 pol
2EI -p,l?
-3lg, +2 =2,
7 (3G “a,)= e
1pl*
0; =
8 El
Solutioniis: o - l pols
*" 6 El
. . . . 3_1 2 4 Pl ;s 5Pd° ;2 Pd sa
Finally the deflection function from the one elerhemodel is w(¢) = (8 6) '3 (8 6) = 24 E] ' 1E 4

The same result as obtained in the case of Ritz netd — why?
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Dividing the beam into LE elements
/
q, d; 9 9,

Ch Vvl q2 q4 q6 q8

0l |6 NV @ NV 2@ 3@

G| |W Friefvid AT T T rfoe,
global nodal displacements vec{a} = Ul_yel 4 le:lg "

Os Wy M

%| |6

q7 W4

%) |6

N=8 nodal diplacements (degrees of freedom of thenedel)

Strain energ)erf each of the elements

—LQJ (K] {ad},

1x4 4x4 4x1

=L qlx1{qt

IxN  NxN e Nx1

[, = [K].= (K=

element 1 with the global DOF : element 2 with the global DOF :
01, G2, O3, Ga Oz, Oa,0s s 0s: Q6 » O7: Ge

element 3 with the global DOF :
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LE

U :zu :%Lq J(;[kﬂe]{q} =§LqJ[K]{q} |

V=U-W, :%LQJ[K]{Q} ~[af{F}

\Y
—=0 j=

oq 1=1,2,3,.. n

[ K ]{ q} :{ F} . + displacement boundary conditions (constraints

For each element the internal forces M, T are ¢aled separately:

G

" n n n n q
M, (&) = EW'(&) = EI {Nl N, NN, J<q§ |

12, | 6 2 12, | 6, |
Qe M= E(f‘?)%‘*g(f‘g'e)%‘E(f‘—?%"'l—:(f‘?%} El,
a i
T(&) =-ElwW"(&) = El {Nl'", N, N;”,N;”J 32
3
Lq4/ e

T(@)=- T—f(oﬂ—qs)ﬂ—?(qﬁqo}a.
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For the case of 3-element model shown in the figinesfinal set of linear equations is

2El

|3

G
G
q
Os
s
o

o
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FEM calculations:

1. Generation of stiffness matricegk]p for all elements
4x4

2. Assembling the element matrices to obtain the g¢lstidness matrix

3. Finding the equivalent nodal force veci)nF}

Nx1

4. Imposing the boundary conditions and the solutibthe final set of linear equations — finding adidal displacement{ q}
5. Calculation of the internal forces (bending momehgar force) and the stresses within the elements

The example

Final set of equations (3 active DOF)

2El

I 3

G W,
Q=16
%) 6

12| 0| 3 |[q, -P
O [4%] 1% |5g,7=4M,
3|17 | 2A%||q M,

7% | 3 | -12
=—— 3 15 | -12
J6El -12 | -12| 48

(exact solution — why?)

M,

Nx1

M;
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5. BARS AND SPRINGS

Finite element of a bar under axial loads:

— u, —U;
Assuming nodal displacemerisi u, we haveu(é) as the linear function: U(C() =u + |

S,

e

After some operationsu(é) may be presented in the standard form as dependdaht nodal displacements and shape functions:

0= Jus Lo = nomelf 2 <), ()
2) e Fl 2
where uy o me -
@ € uE @\
| W _ le
{Q}e = R the vector of nodal displacements — —
Q). 2)e N1(£)
LNJ = LNl(f), NZ(E)J is the vector of shape functions 1
3
Nl(f):]-—lé’ Nz(g):i! @ = @
e le N2($)
MWWW '
@ e 2

Tension bar element with 2 nodes and 2 degreesfaetedom and its shape functions
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Strain energy of the element:

1 EA} )
U= A o(Oe@)ds == (e())ae.

Taking into account that

£(6) :g—;:{N;,NZ’HZ‘;}e.

we have

ue%‘\jm,qge{Ej}[wg,ng{g;}eds:

_EA HNGN, O ONGNG | fa] 1
- 2 I_ql’qZJe_([|:N, ' ' ,:|dg{q }e_quJe[k]e{q}e’

2N1 2 2 2
where
_EAl L -
4=

is the stiffness matrix of the rod element (symioggingular, positive semidefinite)
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Equivalent nodal forces

. L N
The forces equivalent to the distributed loR(¥) E .

W = [ pu@)de = [| N,©) (@), Nz(f)p(m{j} d¢ =

=| [N P&, N, p(E)dE {Zﬂ} .
In result:

O

F° -the nodal forces equivalent to the distribdtati p (‘work-equivalent’ or ‘kinematically’ equivalent)

Wzg :LF1e’erJe{0a} , Where I:ie :JgNi(f)p(f)df'

Next steps of FE modelling are similar as in theecaf the beam element. Finally we get the systidinear quations :

[K]{a} ={F}.
The right side vector{ F} contains the external forces acting on nodesehthdel (active nodes and reactions).

The system is solved after taking into accounbalindary conditions;
When the vector of nodal displacements is deterthitiee stresses within each of elements are compute

o=Ee= E[Nl'(f), N, ({)Hgﬂ} :M.

2 ) e e
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Example.
Solve the presented below rods using FE modeldstedsof 2 elements

a) b)
v P v
— VAN
- 7. _a 7
p,(-a)
q1:0 d, q,=0 (:141::) 4»2 1250
Stiffness matrices of the two finite elements
[k]l EA 1 _1 [k]2 _ EA 1 _1
€ al-1 1 € | —al -1 1 B 1 1 ]
| == 0
a a
. . . O F
System of simultaneous linear equations 1 1 1
EAl —— | =+ - G =1F
a |—-a | —a
1 1 Q3 I:3
| —a | —a

After including the boundary conditiogs=q, =0 andF, =P (case ajve have
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_P(l-a)a
2 EAl '
Fl:—P(II—a)’
F=_2

where F, andF; are the nodal forces (reactions).
In the case Ibhe nodal force in the second node is:

F2:p0(|_a),
2
| —a)? _—-p, (I —a)? -p,a(l —a
Thuqu:—pO(zlEZ) a, Fl_OT, FB:—DOZ(I )

The reaction in the first nodR;=F;
And the reaction in the third node

R.=F - po(l _a)l — _poa(l _a) _ po(I _a)l — _po(l _a)(l +a)
>3 2l 2 2 7. |

R+Ry=-pyl -a).

FE solution in the case a is the exact one btitencase b the approximate (why?)
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Spring element
qﬂl K qﬂ ) F=kxAau=k(u,-u,)

AN~
D 2 MG

Finite element of a spring
Strain energy

1 1 1
U, :E FAu = Ek(Au)2 :—Zk(u2 -u)(u,-u,)

-k u1
Lul’ud -k K K] = k -k
1 e —k k | (stiffness matrix of a spring)
Ue :EI_qJe[k]e{q}e
In the same way may be derived the stiffness médrixhe twisted shaft:

K=Y T

e

whereGl, is a torsional stiffness and the nodal displacémeorrespond to the rotation of the end crossesect

The FE models of the elastic structures can be twlding the structure into finite elements offdient types ( beams, tension bars, springs etc.)
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Example:

Find the finie element system of equatic[l*g]{CI} - {F} for the structure nrecantad phelow

Solution
FE model may be created using 2 be tsrodredement and 2 spring elements. The total murabdegrees of freedom is 9
The stiffness matrices of the beam elements

6 | 3, | -6 | 3,

2 2

K = [z = 2612 S

1 1 1

A, | 12 | -3, | 22

Degrees of freedom of the first element ag,,9,,d,, and for the second,,q,,q;,q;-
The stiffness matrix of the rod element (with thegrees of fredomy, and q,). is

03]

The stiffness matrices of the springs:

_ - 5 _ 1 _1
[k] =k { 1 1 } [k]e - kZ[_l J and corresponding degrees of freedom cgre;, and g, .

The FE system of equatiofi& |{ g} ={F} for the assuming numbering of the degrees of treed
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1 2 3 4 5 6 7 8 9
1 - poll
2 1

2

% - poll2
3 0, 12
, 0% Pol

q, 0
5 O =1~ p0|1 _ P2
. Os 2

0 Pols
7 0 12

0 F
8 |:8

D —  Coefficients of the stiffness matrix of the elemio 1 (beam)

—  Coefficients of the stiffness matrix of the elemio 2 (beam)

—  Coefficients of the stiffness matrix of the elemiNo 3 (rod)

—  Coefficients of the stiffness matrix of the elemio 4 (spring)

Coefficients of the stiffness matrix of the elemio 5 (spring)

[K] may be written in the form
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itk [kp| Ky | ki | 0 0[O0k 0

G [Ka| Ky | KW | 0 [0]o0[0]0

kel,l kéz k:1%3+kfl+kil kl:«;4+k212 kis k214 K 312 0 0

i [k | Kiotki Ktk K3, [K3[0[ 0] 0
(K=o To[ "k [ k& [Karkg[ks[ 0] 0]k
0 | o0 K2 K2, KZ, |k3,| 0] 0] o0
0 0 kS 0 0 olk | 0] O

k2 | 0 0 0 0 ol O|kh| O

0 0 0 0 kS, 0| 0] 0|k,
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6. TRUSSES AND FRAMES

Trusses - structures made of simple straight bars (meg)bgrned at their ends (nodes).
External forces and reactions to those forces amsidered to act only at the nodes and resultricefin the members which are either tensile or

compressive forces. Other internal forces are eitigliexcluded because all the joints in a trusstegated as articulated joints.

N\

The examples of 2D truss and 2D frame

Frames are the structures with members that are rigidlynected - e.g. with welded joints. The membéfsames can be loaded by concentrated
and distributed forces. As a result they carryalsible internal forces (normal and shear forlgesding moments and torsinal moments).
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2D trusses

TRUSSES

Relation between the nodal displacements in ladahfent) coordinate systems and in global coordaat

|al, =] &.a, ], along the axis of the rod | q |_ =| u,0;,u,,0, ],in X,y coordinate system

y A

Finite element of a plane truss

Strain energy of the element

.=>Lallk.{d}, =5 |

x2 2x2  2x1 x4  4x2

U, :%quJe[kg:le{qQ}e’

(5] K], [T {ad,

g =Uu cosa +u, Sina. (i=12)

U

Q| _|cosa simx 0 0|y
q29_ 0 0 comx sim||u,|’

{Q}e = [Tk ]{qq }e |

e

k], =

2 2 *
X4 a1 || -Cc"|-sc| ¢C sC )

s=sina, c = cosxy

The stiffness matrix of the truss element in global coordinate system
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Example.

Find the displacement vector of the node 4

ofsthele 2D truss for the cas@, = £, and the horizontal force @ =0).

Element1l nodes1and 4 slope angle= 8,  length I, =

cosa,
Element 2 nodes 2 and 4 slope angte, =0 length |, = |
cosa,
Element3 nodes 3 and 4 slope angte, = -4, length |, = |
cosd,

Rozwigzanie

1 2 3
The stiffness matrices of the three eIemeLij ]e J [kij ]e J [kij ]e are defined by (*).

The system of FE equations:

ki |k, | 0] 0] 0|0 Kis K [0 R

Kk, [k,Jololo] o K, KL, 0 F,

O 0 k121 kZI.22 O O ka k ]2.4 O F3

o[ o|Ki[K,| 0] O k2, k2, 0 - Fo |
O 0 0 0 k131 ku kJ:.33 k ]3.’4 O F5
o[loflof olK[K, k2, K, 0 =

kél k113-2 k§1 k§2 k gl k 32 k 13?:* k 233_’|- k 333 k 131- k 231- k 334 q7 PCOSy
kil kzllz kz211 kzzlz kil kiz k143+ k§3+k23 k}l4+kz214+ki4 %) (Psiny]

Taking into account thagy, =0 for j=1,6 the set of quations may be reduced to
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Assuming ﬁl = ﬁz = ﬁ y= 0

where c=cosf, s=sinf.
Then

The normal forces in the elements are calculatau the nodal displacements in the local (elemesjdinate systems

30| 3 c .
.Z_, .Z:fl_ (o Psiny

EA 3 3 2 - .
;% ;I—_ q| |Pcosy
EA|1+ 203‘ 0 ((q)] [P
I 0 ‘ 25c||q,[ |0
g = Pl
" EAQL+ 267
g =0
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3D truss element in the coordinate system Xx,y,z

o c. | cc | ¢C | ¢ | —cg, | —CgC,
\lji cc, | ¢ |cc |-cc, | ¢ | -cc,
‘3’; [kg] _EA cxc22 cC, | C _szcz -c,Cc, | —C;
v e I,| —¢ |-cc,|—¢cc, | ¢ | cc, | cg,
W, -cc, | —C; |-¢c, | cc, | C | ¢,

-c,c, | —¢,c, | —C; | ¢C, | cc, 2

¢, =cosa, C, =C0sa, C, =COSq,

where
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FRAMES
2D frame element in the local coordinate system
The stiffness matrix of a frame element assembiedh fthe stiffness matrices of the beam element vath degrees of freedom and the rod

element with 2 degrees of freedom:

1 2 3 4 5 6
?—A 0 0 —'f—A 0 0
6
, | 2B & | & &
s | E
a, o | 6B |4 [ |- [ =
2 iz | 2| 1
[k]e: _EA EA
=l B o | 221 o 0
= le le
1261 | 6kl 1E | - &
Ol | Y TE | e

The stiffness matrix of a frame element in local aardinate system

The element with 6 DOF , the deformation defingdhe functionsu($) i w(&) in the local c.s. It is called also 2D beam eletme
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2D frame element in the global coordinate system xy

ql ul

q2 Vl
R 9
{a} = q, {9,}= u,
ds v,

de 8,

The vectors of DOF of the frame element in the local c.s. {q}e and in the global c.s. {dg}e

The relation between the displacement of a nodateldcial (element) coordinate system and in globafdinate system

Q, =U,Ccosa +u, sinr ,
Q, =-Uu,sina +u, cox

0 =6,
b U,
d, Uy
o 6,
=|T =|T ,
o =g f=irldal,
0 U,
A, 6,

where the transformation matrij, | is
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c|s|0| 0|O0]|OQ
-s|{c|0] O|0O|O
olol1/ o|lo|loO
W=l 9 ToTol e [s]0
0|(0|0|-s|c]| O
o(ojol0|o0O|1

Strain energy of the element

U, = Lal Ik =5 0 LITT KL ) o),

U, :%ngje[kg]e{qg}e’

K], =TT KLITT

is the stiffness matrix of the 3D frame elemengliwbal c.s.
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3D frames (beams)

zZ' Y1
' w

w) y . ?

, A A v,
The local (element) coordinate system is connewitfdthe axis of the element. '} ;
The element X’is oriented along the element. _ u

u, X

The y’ axis is automatically set parallel to thelml xy plane @ @)
(If the element is perpendicular to the xy plare:this located T

in parralel to the global y axis)
The element input data include:
- the node locations
- the cross-sectional area
- 2 moments of inertia about the principal axes efgbction
- the parameters defining shear stiffness in thecypat directions

and the torsional stiffness

e

T
{a} =Juy, vy, W 0T, @500, Uy, V,, W ,sﬂé,%sﬂéj
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Z' ‘2 EA . i
. W — macierz symetryczna
) y 2 |
Wl , e
, v, ¢1 A 0 1%,
Y I \ |e3
/L 7777777777777777777777777
u
T X 0 0 12El,
@ @ R
Gl
— ' ' ' X Y 7 ' ' ' X Ay 2 T 0 0 0 2
{q}e_ ullvllwl’Qﬂl!Wl’Wl’ U2,V2,W2 vg021§021§02 Ie
0 _6EI v 0 4El,
12 le
6El 4El ,
IZZ 0 0 0 I £
M= o S
—l— 0 0 0 0 0 I_
0 _12FI, 0 0 0 _ 6El, 0 1,
12 12 12
12El ) 12El
0 e Y 0 6El, 0 0 Y
2 I lo
X
Gl Gl
T 0 0 0 - 0 0 0 0 0 S
{ah=Jus Vi, Wi 010100 Up, Vo, W, ,sﬂé,%sﬂéj le l.
6El 12El ., 6El 4El ,
0 - |2y 0 I £ 0 0 0 |2y 0 ] Y
6El 2El , 6El , 2El
0 I_ZZ 0 0 0 I—ZZ 0 _I_ZZ 0 0 0 I £

3D beam element and the corresponding stiffness matrix in the local (element) coordinate system xy'z
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7. TWO AND THREE- DIMENSIONAL LINEAR ELASTOSTATICS

The finite elements of trusses and beamgdaeeto specific assumptions and simplificatioaege —dimensional. All field problems of stresalgsis

are in fact three-dimensional. In some limited sabe mathematical description of the problem n&fobmally reduced to two dimensional modelsripla
stress state, plane strain state, axisymmetryjeoewen one dimensional as discussed bef.

Consider a linearly elastic body of volu®ewhich is bounded by surfa¢e

yi

Data:
(X2) I

Q —the analysed volume (domain),
I —the boundary,

p, —boundary tractions  [N/th,
X, —body forces [N/r.

prescribed displacements on on the part
of the boundary’

Unknown internal fields:
u, —displacement field,

&; — strain state tensor,

X (xa) o, — strss state tensor,
Z (%)

The body is referred to a three (or two) dimendioma&tangular, right-handed Cartesian coordingstesnxi , i=1,3 (or X,y,z). The body is in
static equilibrium under the action of body foréeésn Q, prescribed surfacetractionsp; andprescribed displacements uion on the boundaiy
The three unknown internal fields atisplacements ui, strains &; andstresses ;. All of them are defined ir.
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Component notation (Einstein indicial notation) for Cartesian tensors

The notation is used in rectangular Cartesian ¢oates. In this notation, writing is equivalent to writing the three componemtsu,, us of the
displacement field.

The Einstein summation convention is a tensor rtawhich is commonly used to implicitly definesam. The convention states that when an
index is repeated in a term that implies a sum allgyossible values for that index.

Three examples:

oy _ ¢ 0y 6u1+6u2+6u
6>q i axI 0x, 0X, O0X,
ou oy 04 0y Loy 0u
ox, | 4t ox, axln1 ox, - OX, -

aj Xj=b i,j=1,n denotes the set of n linear equations

The indication of derivatives of tensors is simifilystrated in indicial notation by a comma.
af

K3
The comma in the above indicial notatiodicates to take the derivative of f with respecthe coordinateix

Examples: U, a_u_z oy _0u  0u, 0dug

ox 5 6>g ox, 0X, O0X,
ou ou, [ ou, ou
un=—n=» —n= +—n,+—n,
Poax T 5 oox X toox, © ox,

The Kronecker delté a convenient way of expressing the identitingicial notation: J; = {—10 If_fl;t__J }
Ll

The Kronecker delta follows the rules of indexatian: A, =g, A,
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Strain state:
_ _ _ _ yA u, + 0u, dy
3 extensional strains 3 shearing strains oy
— aux — aux + auy
X ax Y gy ox . u__#p C a_aﬂ B_aux
e - ou, _du, . ou, X B oX oy
Y oy Yoo = 9z X D™ V=0 +P
e _du, y _auz+auy A O A
2 0z 29y oz C 6 |u +a&dx
dy Y ox
yxy ) yyz, Yzx - engineering shearing strains A D v v
dx
—
X
The strains may be written in the form of symmetnigtrix assuming that
Ey= Yn/2 &~ VW2 , €= Y« 2. In this case the strains components form the symizaéstrain tensor.

The components of the strain tenspare often written in the form of symmetric matrix.

[E Iy E.'I."-' Xz H
VE

8.
€= JE VX E'l'_'l' £,
lB = E__.l' E__:

& :%(um +u;;) (g€ ) - kinematic equations



FINITE ELEMENT METHOD 1 - lecture notes Pagfe of 89

Stress state :  stress tensor g

Constitutive equations ( 3D Hook’s law)

0, (&)
1 1 _E | Y,
%T T = 0 -y(0, +0,) o'x_1+v_gx+1_2v(ex+8y+82)}
1z y _ 1 ] — E I \%
Ey—E O-Y_V(OX+OZ)_ O-y_1+v 8y+1_2\)(8x +8y +82)j|
Txz %5 E [ v
1 —
—— = - O,= E, + E, +E, +E
oy (&, SZ—E 0, V(GX+O'y) z 1+v| z 1_2\)( X y z)i|
Ty |Tyx 1 =
=—T —
Ox (8X) YXy G X Txy =G D/xy
1
yyz_a-[yz Tyz:GD/yz
Ox=0 6,= G0 6,=0C
x— Oxx y— Oyy 7— Oz Vi :isz
G E Ty :GD/ 7. .
E-Young’s modulus, G= ( ) - shear modullis, v- Pdisson’s ratio
21+v

Y 1 \Y;
gy =26 & +ﬁ5'j (8a)| & e O _mdj Ok | (o= €11 +e22 +e39)

Strain energy density: 1
U =§[UX5X +0E,+0&+T Y +T,.V,+T, ), ]

U=1% gjj Ojj

1
Principle of the total potential energy: V=U-W, :EJUijﬁde ‘J XudQ ‘J pudl =min |
Q Q r
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Matrix notation
Matrix notation is a modification of direct tensootation in which everything is placed in matrixrfg with some trickery used if need be. The

main advantages of the matrix notation are hisabrcompatibility with finite element formulationand ready computer implementation in
symbolic or numeric form.

The representation of scalars, which may be vieagetl’X 1 matrices, does not change. Neither does theseqmiaion of vectors because vectors
are column (or row) matrices. Two-dimensiorsgmmetric tensors are converted to one-dimensional arrays ligtaonly the independent
components (six in three dimensions, three in timedsions). Component order is a matter of coneantut usually the diagonal components are

listed first followed by the off-diagonal compongnt

O-X X
Jy y
. . o g, g,
For the strain and stress tensors this “vectoonagprocess produces the vectors= . {g= ,
TXY yXY
Iy Vye
T Y
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The relation between the strains and the displacemécomponents in matrix notation:

{e(xy.2)} = [R{uxy.2)},
[R] is called symmetric gradient matrix in the contimumechanics literature.

For 3 dimensional case :

9 0O O
0X
0
o €. 0 a_y 0
g, & 0 0 9 J J
g, g, 0z "
o= r ! {5}: ! [R]: 0 0 ! {u}: uy =Y
Xy Yy g %2 9 u
z'yz yyz ay 0Xx z
sz yzx 0 i i
0z oy
N
| 0z 0X |
In 2D case i .
9
o, g ox
_ _ 0 _ju
o=30,t, {&g=1¢ 1, [R]= | {u}—{u}
Loy x|
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Hook’s law:

1-v| v \ 0 0 0

1-v 0 0 0
v |1-v 0 0 0
1-2v
= _ E ol o] o|=—=] o 0
{o}=[Dfe}, (o=t 2
Q+v)1-2)
0 0 0 0 ﬂ 0
2
0 0 0 0 0 1
2
Plane stress StatG(Uz =0,7,=0,7, = O) Plane strain state(c‘fZ =0,), =0,/ = 0)
1{v| O 1-v| v 0
[D]=—S[v[1] 0 D= = [ v [1-v] o |.
1=v L+v)d-2v) 1-2v
1-v 0 0
0|0 — 2
2
Strain energy density
1
U —ELfJ{U}

Total potential energy : vV=Uu _WZ :%E[I_EJ{O'}C'Q —il_XJ{U}dQ _'EL pJ{u} dr
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Finite element method for 2D and 3D problems of thary of elasticity:

LE
The domain Q is divided into the subdomains (finite elementy) : Q= UQi QNQ;=0

\
2D elements g L
u

AN T

6DOF 2DOF 8DOF  16DC

W

3D elements

&t@

12DOF 24DOF 24DOF  60DQF

2D and 3D finite elements

Displacement field over the element is interpolated from the nodal displacement
{ut =[NCoy,2)] {a}.,

where{q}. - nodal displacements vectoN] - shape functions matrix.

For example for the simplest trangular element with 3 nodes and 6 DOF the relation is
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where N are the linear functions

{U(X, Y)}z[Nl(X, y) 0 Nyxy) 0  Nyxy) 0 } U,
u(xy) 0 N(xy) 0  Nyxy) 0 Nyky)

Shape functions N are usually polynomials defined in local (element) coordinate systems.
Displacements, strains and stresses within each elementfareddas the functions of the coordinates of the considered point and tHe noda

displacements

{u} = [N]{d}
{} = [R]{u} =[R][N]{q},=[B]{d},, [B]- strain-displacement matrix
{0} = [D]{&} =[D][B]{d}..

The strain energy of the eleméntis:

I\JIH

=5 ]Le]
.= JLak8'[0] [8] {d) 00 ueszqJe[k]e{q}e.

Where

[K], =£[B]T[D] [B]d0, = [[87]do,

is calledthe stiffness matrix of the element (symmetrical, singular, semi-positive defined) with the raegeal to the number of DOF of the
element. Matrix [B] depends on the position within the element so the integratioresettpai special numerical techniques.

Total strain energy of the structure is the sum of the finite elementgyener
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LE
U= ZUe . (LE- number of finite elements in the model)

e=1

1
Using the global nodal displacement vector {q} U= E'_QJ [ K] {Q} ,

Ixn  nxn nx1l

where n is total number of DOF of the model z[in is the stiffness matrix of the model.

The next step in FEM algorithms is finding the equivalent nodal forces {F} correspaodimg distributet loads {p} and {X}.

The total potential energy of the model is:
1
v=U-w,="|a][K[{q-[afF}
Ixn  nxn nx1 Ixn nx1

The minimum is determined by the conditions

oV

- = 0,

daq

[K ]{Q} = {F} : (to be solved using neccesary displaceinembhdary conditions)

The strain and stress components in each finitaexié are found using the relations

ter= [Bl{d},. {o}=[Dl{e} =[D][Bl{d}.
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u(x,y)=> N, (x,y)

i=1

V(X y) =D N (x,y),

i=1

ul _| Ni(x,y)
v 0

0
N, (x,y)

8. CONSTANT STRAIN TRIANGLE (CST)

N, (x,y)
0

Ni (i, i )=1,

0
N, (x,y)

N3 (,y)
0

N(xj, y;)=0 fori

0
N, &,y

]

A‘=A1 + Ay +A3

Uq
vy
uz

{q)e = Vs

Uz
V3
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X, 1 1 1
Ni(x1y):A( Y) :%Xl X, X
Ab Yi Yo Ys
N(xyr=?5(a+hx+0y)
| ) 2& |
Nifx, y} 4

S|y
(4=, 000 =11 =R M, ],
V(X Y)) port e

1 1 1
1
Exl X X5
Yi Y Y;
a =X Y — XY,
b=y, - Y
C =X —X
P(x, y)
A !
A A;
0,

{} =[B]{d],

3x6  6x1
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Strain- displacement matri[<B] ;

% 0 aNZ 0 % 0 ulx, y) &
0X 0X 0X vix, y)
[B]=[RIN]=| 0 2% o 2 o 2%
oy oy oy
ON, ON, ON, ON, ON, ON, =
| dy oOx 9y oOx dy OX | y
. b 0 b, 0 b, O] X
[Bl=5410 6 0 0 st i
G b c, b, c; bs_ \\
With constant coefficients for each finite element. '
CST - constant strain triangle! - linear displacerant field within elements and P
constant strains and stresses

t

{g} =[D[{£}
{g} =[D][B]{a},
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STRAIN ENERGY OF THE ELEMENT

Je hef [ {a}dA = AR LJ[B] [D][Bl{d}.

= laL[K{de

The stiffines matrix of the CST eleme[rk] o

[ =5 An[e[ [D][E]

6x3 X3 X6

The strain energy of the entire model (N degrees of freedom)
1
U= ELQJ[K]{Q}

Where{ q} is the total nodal displacement vectc[r.K] matrix — symmetrical, semi-positive defined , singular
V=U-W, = —LQJ[K]{q} Laf{F} = min!
Ixn  nxn nx1 Ixn nx1

Global nodal forces vecto{ F} is assembled from the equivalent nodal forces of all elements

Minimum of V with respect to {q}— [ K]{ q} :{ F}
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Nodal forces of theQ2. element equivalent to the body Ioad|_XJ :

W= [ X {ubdQ, = J [ X JINKa},dQ. =[ F* | {d}.,

Qe

LFXJe = ILXJ[N]dQe ( e.g.|:1X = J- X,(X, YIN (X, Y)dQe)

Nodal forces equivalent to the surface tractiacting on the edgd™” of the elementQ,

we = [ pfubarz = [Lp)(N}ch,dre=|F®|{d},
[FP| = _;LDJ[N]dFS.

The total stiffnes matriX is singular — the system of linear equations is modifigdtaking into account the current displacement boundary

conditions.

|F | =LFuFo FoFuFsFe = F* | +| FP|

e

Y
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a) b)
- \_/ - - \_/ -
c) d)
—~— \ r _— _—
— ’Af — N _—
e) f)
- \/ - - \/ -
=WW 7777= =7777

/777

The 2D model of a tensioned plate (under external loads being in equilibruim ). The aodreatorrect constraints

(constrained rigid body motion,unconstrained deformation)
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Finite element program:

Preprocessor
Information describing

- the geometry,

-the material properties ,

-the loads, the displacement boundary conditions.
Discretization of the model using the chosen type of finite elemets
(e.g. CST)

Processor
Assembling the stiffness matrix using the stiffness matrices of all
finite elements
- Building the set of simultaneous equations with included
boundary conditions (displacement b.c. and equivalent
nodal forces)
- Solution of the set of equations — calculation of all noda
displacements
Calculation of strain and stress components within all finite
elements

Postprocessor

Graphical presentation of the results (contour maps, isolines
isosurfaces, graphs, animations)

Listings, tables

User defined operations on the received results
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RESULTS OBTAINED USING CST ELEMENTS - AVERAGING
Example —2D FE model of the cantilever beam
Finite element mesh

Vertical displacement distribution

T ——
-5.29 -4.114 -2.939 -1.763 -. 587743
i o -4.702 -3.526 -2.351 -1.175 0
Bending stresso( ) distribution
(element solution)
- 2356 -1310 - 263. 47 783. 007 1829

-1833 -786.708 259. 769 1306 2353
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-2356 -1310 -263. 47 783. 007
-1833 -786. 708 259. 769 1306 2353

Averaged presentation (namealdal solution)

Averaged stress vecto
at noden

{o} =2 {a}' Ik
(k=7)

-1553 -860. 368 -168. 061 524. 247 1217
-1207 -514. 214 178. 093 870. 401 1563

stress vectors in the CST elements
{a} #{a}* #{a}’%...
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9. 8-NODE QUADRILATERAL ELEMENT . NUMERICAL INTEGRATION

The technique used for the formulation of the linear triangle can be formadlydext to construct quadrilateral elements as well as higher order
triangles. But it is connected with some difficulties:

1. The construction of shape functions satisfying consistency requiremehtgter order elements with curved boundaries becomes
increasingly difficult.

2. Computations of shape function derivatives to evaluate the strain-displacemmat mat
3. Integrals that appear in the expressions of the element stiffness mdtdrresistent nodal force vector can no longer be carried out in
closed form.
The 8-node element is defined by eight nodes having two degrees of freedom at eathmsldions in the nodal xu)( and y directions Vj. It

provides more accurate results and can tolerate irregular shapes without mwflatasiracy. The 8-node are well suited to model curved
boundaries.

A

n y w G) (% ¥)
©® D2
o O

v

(1) - (%)
(-1-2) - (%) (L-9 - (%.¥,) (LY - (%.ys) (-1.9) - (x,.y.)
(0.-3) - (%.Ys) (L.0) ~ (%) (0.9 - (%.y,) (-1.0) ~ (%)
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8 8

x(€n)=2N(Em)x  y(&n)=2N(&n)y,

i=1 i=1

N>(E, Na(E,
X o/ 1
/ / M Ny(¢7) = =2 (1= ) (1=1) (1+ ¢ +1)
Y A
,//PHH;Eicﬁﬂjyr ) e N,(&) = =3 (1+ ) (1-7) (1= +1)
R 1 Ny(E7) == (1+€) (1+7) (1-€ 1)
N,(&) = =3 (1-8) (1+7) (1+ £ -1)
Shape functions Nand N
X,
Yi
XZ
x] [N, O N, O N, O N, O Ngj O ... N;j © Yz x|
{y}” ON ON, ON, ON, 0N, .. 0N, 3‘ {y}_
X
Yol e

u(é.n) =2 N, (&muy

i=1

z Z
~
S =
I I

z

™

3
]

NP NIR NP N -

=[N]{xv}

— —
T
Ny
N

=
|

—
T

H
+
o
N— N—
—_ S— —_ N—
T
S|

NNy

1-7n



FINITE ELEMENT METHOD 1 - lecture notes Pegfe of 89

ul
Vl
u2
Wy [N, 0 N, 0O N, O N, 0O N, 0 ... N, 0 ‘ljz e
v |0 N, ON, ON, O N, O N .. O N, j v e
3
u8
Vg o
9 0 i i
0 ON, g |ONz| g [ONg | g | |Ng|
“a 0X 0x 0X 0X
{5}:[R]{u}: 0 _[N(E’”)]{q}e:[B]{q} [B]= 0 ON, 0 ON, 0 % 0 ONg
3x1 3x2 21 _ﬂ 2x16 16x1 3x16 16x1 ay ay ay ot ay
9|0 ON, | N, [aN, [N, [aN, [aN, | |aN, [ N,
_ay aX_ oy | ox | day | Ox | Oy | Ox ay | ox

3x2

Partial derivatives of shape functions with respect to the Cartesian cossdinaty are required for the strain and stress calculations. Since the
shape functions are not directly functionxa@indy but of the natural (local) coordinates and 7, the determination of Cartesian partial
derivatives is not trivial.

We need the Jacobian of two-dimensional transformations that connect the diffedrik, y} to those of{ £, »} and vice-versa

x| [gN o goN ]
oé 0¢& i 0 =y |
[3] = o= =[3(&n)]

ox oy 2 0N, 2, 0N,
o on _;aﬂa(i iz=1:’7Eyi
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Matrix J is called theJacobian matrix of (x,y) with respect to( &, 7 ), whereas) is the Jacobian matrix of &, ;) with respect to, y).
J andJ-1are often called thdacobian andinverse Jacobian, respectively. The scalar symbdmeans the determinant &fJ =|J|=detJ.

Jacobians play a crucial role in differential geometry.

ON, _ 0N, ¢ 0N, 97 ON; | 1 9¢
X 65 ox 97 ox a"ﬁ _ gx
AN, _ 0N, 9£ N, p o
oy o€ oy on dy y) Loy
< ¢ 0 0¢ |} ox | _

oN, ox dy || ON;

L 0n) [on on Loy ]

=[B(&.7)]

= | —LEJ

Qe (x, y)

J' f (x,y)dxdy = I

A(x,y) A(¢n)

f (£,7)defJ]dédn

an|[aN, N,
ox || 0 | 1] 0&
an [lan [ "0y,
oy |{ on on
N,
0X
9 on,
oy

chay=; | Lal (el [Dlle}d), ooy

dxdy = def{ J] dédry

vl ] e I
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U, =L al.[K.{d.

.= ] (8] [olieloay= | [s(e)] [o)(s(¢m]deCa € nlaconf[3(¢ )

16x3

Nodal forces of theQ2e element equivalent to the body load

W =[x fuda, = [[ X JINKd.do. =[F* | {d),
7], = [ [IN]ea,

/ "/
X
—

T

1
m]>

Xi

F/3

F/12 F/12

Work-equivalent nodal forces for uniform constant body load in the case of CST elememicgledc@iadrilateral element
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Finite element method results: continuous displacement field and discontinosiisltes

Displacement component (e.g. u(x,y)) interpolatieer two finite elements

ou :6u
axl,” ax (&), = (&x),

ol oul T (e),# (o),

= (a3), %(a3),
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Numerical Gauss integration in FE algorihms

The use of numerical integration is essential for evaluating elememailstefjisoparametric elements. The standard practice has beeraausse
integration1 because such rules use a minimal number of sample points to achieve a desirechteuebof. This property is important for
efficient element calculations because we shall see that at each pamplee must evaluate a matrix product.

(k.= [ [B] [D][B]dxdy= j [B( 5/7 )T [D][B 5/7 )]de{ 3 (£ 17) |dé&dn
Qq(&1m) (xy)
The numerical intergration have to be also performed for flndlng the equwalent omdassl.f

One dimensional integratiorf .
In general: (x) /

_[F dxz /

Introducmg the new variable <h<1
(a+b) b-a b a
= /4 - - adx
2 2 [y —1
X1 | X2 | X3 | X4 X5 X R

b-a " N

_[F X) dx = I =" [ t(n)dn
% n

The Gauss |ntegrat|on
1 B n B dan x=a y Xz?-
[T an=3me(n)+R R =04 T 1 N
o] i=1

Heren > 1 is the number of especially defined Gauss iat@mn pointsw; are the integration weights, anidare sample-point
abcissae in the intervat],1]. The use of the intervat],1] is no restriction, because an integral ovetlaer range, from to
b can be transformed to the standard interval vianals linear transformation of the independentafale, as shown above.
The valuesn; and ware defined in such a way to aim for best accuradeed, if we assume a polynomial expressias, it
easy to check that fersampling a polynomial of degr@a— 1 can be exactly integrated .
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Table below shows the positions and weighting coefficients for gaussiaratiiag

f(n)
Abscissae and weight coefficients of the gaussian Quadrature
n ¢ (i=1,n) W (i=1,n)
1 0 2
’ EYNE d
+1//3 1 moom n M
3 -J0.6 5/9 >
0 8/9 ] ‘ 1
o 1 / n
+/0.6 1
4 -0.861136311594953 | 0.347854845137454
-0.339981043584856 | 0.652145154862546
+0.339981043584856 | 0.652145154862546
+0.861136311594953|0.347854845137454 A
5 n
Remarks: The sum of weighing coefficients is always 2 1
The integration gives the exact solution for polynomials of 2n-1 degree. 5 25
w=5x4=25 | weex2=D wl=oxl=o
"9 d w1l S 9 8y o 81
Numerical integration — rectangular region:
11 1
n n n _1 1
[Tt (emdean=](3 1 () |dn=3wSwt (62, —s =
=t j=1 =1 .5 4_40 ., |8.8_6 |_5_8_40
e s “ToMq e ™o e Mo e Te
=22 ww; f (‘ri’ﬂj) => W, f (&)
i=1 i=1 k=1 e O
. B_5_A4 25
R 3_25 =Px2- SR
=54 a1 W=l 9_8(1T YF9 9™ a
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RESULTS OBTAINED USING  8-8DE ELEMENTS - AVERAGING

Example —2D FE model of the cantilever beam (campathe results corresponding to discretizatiith @ST elements)

- 3045 -1691 -336. 56 1018 2372
- 2368 -1014 340. 577 1695 3049

Bending stressx' distribution (element solution)

MAY 18

= NORV

-743. 468 578,331 -413.194 248. 058 -82.921 82.216 247.352 412. 480 577.626 P 743. 468 -413.194 -82.921 247.352 577. 626
B - . - . . . i -578. 331 -248.058 82.216 412. 489 742
ox element and nodal softu oy, element and nodal solution
UNIA EUROPEJSKA * Rk
KAPITAL LUDZKI EUROPEJSKI [ :*

NARODOWA STRATEGIA SPOINOSCI FUNDUSZ SPOLECZNY B

* 5 %



