
 
 

 

 

LECTURE 5 

INTRODUCTION TO NUMERICAL 

METHODS FOR ORDINARY 

DIFFERENTIAL EQUATIONS 

(INITIAL VALUE PROBLEMS) 

 
 

              



The aim of this lecture is to provide an elementary introduction to the numerical methods 

designated for the initial value problems (IVP) formulated for the ordinary differential 

equations (ODE) and their systems. This is the class of the computational tasks which are 

particularly common in the engineering practice. The reason is twofold: 

 The ordinary differential equations are used to describe the time evolution of various 

physical systems with lumped parameters (mechanical, electric, electronic, chemical, 

etc.) 

 Most of the ODE encountered in practice cannot be solved analytically 
 

 

Consider the initial value problem formulated for the single 1
st
 -order differential equation. 

The standard form of such problem is  
 

( ) [ , ( )]

( )0 0

y t F t y t

y t y

 



 

 

where the function F and the initial value y0 are given. If F does not depend explicitly on 

time, i.e. F = F(y), then the system is called autonomous.  

 

 



 

We will not discuss here the mathematical results pertaining existence and uniqueness of a 

solution to this problem. Instead we will just point out to the possible problem by showing 

representative counterexamples.  
 

First, let us remind that the problem may have multiply solutions. The standard example is 
 

/( ) ( )

( )

2 3y t 3y t

y 0 0

 



 

 

Which is solved by two different functions, namely 
 

( ) , ( ) 3

1 2Y t 0 Y t t   
 

The reason the solution is not unique is that the right-hand side function is not Lipschitz-

continuous at y = 0. 

 

 

 

 

 



Next example shows that the solution may not exist for arbitrarily long time interval. Consider 

 

( ) ( )

( )

2y t y t

y 0 1

 



 

 

The exact solution is ( )
1

Y t
1 t




    and we see that    lim ( )
t 1

Y t


 
,
i.e., the solution “blows 

up” in the finite time t = 1. 
 

 

 

 

 

 

 

 

 

 

 

 



NUMERICAL METHODS – THE GENERAL CONCEPTS 
 

In the numerical analysis of differential equations, time is discretized, i.e. approximate 

solutions are determined only for the finite (but usually large) number of discrete time 

instants.  The distance between two subsequent time instants is called the time step (we will 

denote it by h). An approximate solution is determined by means of a certain integration 

scheme. Such scheme is simply the recipe explaining how to obtain the solution at the next 

time instant k 1 kt t h   , providing that up to the current time kt t  the solution is already 

known. 

 

The general form of the integration scheme for our standard problem can be writes as 

follows 
 

( ) ( ) ( ) ( )[ , ; , ;...; , ; , ]k 1 k k n 1 k n 1 k n 2 k n 2 k k k 1 k 1y y G t y t y t y t y             

 

In the above formula, the symbols , ( ),...,jy j k n 1 k 1     denotes the approximate value 

of the solution at the respective time instants.  The function G may not be directly given as an 

explicit formula – it rather symbolizes a certain numerical recipe for determination of the 

solution increment in the time interval [ , ]k k 1t t  .   

 



 

In general, this recipe may be multi-step, i.e. it may use the solution from several previous 

time instants (the number n can be larger than 1). Obviously, only the single-step schemes 

(with n = 1) are self-starting (the initial condition is imposed for only one point in time).  

 

The integration schemes can be explicit (open) or implicit (closed). In explicit schemes, the 

function G does not depend on yk+1 (and tk+1), hence the formula for  yk+1 is direct (explicit). 

In implicit schemes, the list of the arguments of the function G includes  yk+1 (if the function  

F depends explicitly on time - also tk+1). Thus, the formula is indirect, i.e., we deal with some 

kind of an algebraic (and usually nonlinear) problem, which has to be solved with respect to 

yk+1. 

  

 

 

 



THE EULER SCHEME. CONSISTENCE, STABILITY AND CONVERGENCE. 
 

The simplest possible integration scheme is the Euler method. It can be formally derive from 

the Taylor expansion theorem. Assume that ( )y Y t  is the exact solution of our IVP and let 

Y has continuous derivatives up to at least second order. Then, the one can write the equality   

 

( ) ( ) ( ) ( ) , ( , )21
2

Y t h Y t hY t h Y t h 0 1          
 

 

For sufficiently small time increment (or time step) h the quadratic term can be dropped and 

we arrive at the following formula 
 

[ , ]

k

k 1 k k k k

F

ky y h F t y y hF      

 

where ,k k 1y y   are approximate values of ( ), ( )k kY t Y t h , respectively. 
 

What is the error made by this scheme during one time step? More precisely: what is the 

difference between the exact and numerical solutions at the time kt h , if we assume that 

both solutions ideally coincide at the time kt  ?  
 

 



This difference – called the local approximation error  (LAE) of the scheme – is the most 

basic characterization of any numerical scheme. Obviously, we demand that the LAE of each 

reasonable integration scheme shrinks to zero while the time step h 0 . In other words, any 

integration scheme should be consistent.  
 

The consistency of the Euler scheme can be easily established. From the derivation of this 

scheme it is clear that LAE can is equal 
 

ˆ( , ) ( ) ( )21
k k 1 k 1 2 ke t h Y t y h Y t h        

 

where ˆ ( ) [ , ( )]k 1 k k ky Y t hF t Y t   . Clearly, lim ( , )k
h 0

e t h 0


 . 

 

An important characteristic of an integration scheme is its order of accuracy. We say that the 

order of the integration scheme is equal r if and only if the LAE of this scheme can be 

represented by the Taylor expansion as 
 

 
( )

( ) , , lim
r 1

r 1 r 1

r 1h 0

o h
e h Ch o h C 0 0

h


 


    , 

 

i.e., the leading term in the Taylor expansion contain the time step h in the power r +1. 
 

We conclude immediately that the Euler method is the 1
st
 -order scheme. 

 



Yet another essential issue is the numerical stability of the integration schemes. This problem 

is rather complicated and its more detailed analysis will be postponed to more advance 2
nd

 –

year course “Numerical methods”. Still, the essence of the stability concept can be explained 

on the following example. 
 

Consider the following test problem: ( ) ( ) , ( ) 0y t y t y 0 Y   ,  where R Ii     is the 

given complex number. The exact solution is 
 

( ) exp( ) (cos sin )Rt

0 0 I IY t Y t Y e t i t      
 

 

Note also that  if  R 0    then lim ( )
t

Y t 0


 . 
 

Let us apply the Euler scheme to the test problem. The numerical solution is the sequence of 

the complex numbers obtained from the recurrent formula 
  

( )k 1 k k k k ky y hF y h y y 1 h         
 

One can easily infer the general formula, namely 
 

( )k

k 0y 1 h Y   
 

 



Question arises: when does this sequence properly follow the asymptotic behavior of the true 

(i.e., exact) solution? 
 

If R 0   then this sequence should be bounded and approach zero while k . This will 

happen only when 1 h 1  , i.e., when the complex number h  is located inside the circle 

( , )z 1 0 1   . If R and 0     then the stability condition is 
 

2
1 1 h 1 h


       

 

Note also that in such case the exact solution approaches zero monotonically. The numerical 

solution will share this property only when  0 1 h 1   , i.e., if /h 1  .  We say that the 

Euler scheme is conditionally stable, i.e., it is stable for sufficiently small time step.  

 

Consider  now the time interval of the prescribed length T. More precisely, let ( , )0 0t t t T  .  

Next, divide this interval into n subintervals (time steps). It is sufficient to assume that all 

intervals have the same length /h T n . 

  

 

 



The global approximation error (GAE) of an integration scheme is defined as the difference 

between exact and numerical solutions at the time 0t T : 

 

( , ) ( )0 nE n h Y t nh y    

 

Of course, it is assumed that at initial time t0 ( )0 0y Y t .  

 

We say that the integration scheme is convergent if and only if  lim ( , )
n
nh T

E n T 0



 .  

 

The convergence implies that for each value of T we can found a sufficiently small time 

step h such that the discrepancy between exact and numerical solution  after time t = T 

can be made arbitrarily small. Or – putting things yet another and more practical way – 

the accumulation of the local errors during integration procedure can be kept under 

control. 

 

 



It can be shown that the Euler integration scheme is convergent. If we consider the test 

problem, then this conclusion is immediate as 

 

( ) ( ) ( )n n TT
n 0 0 0n n

y 1 h Y 1 Y Y e Y T


       
 

 

In general case, the proof relies of the assumption that the right-hand side function F is 

Lipschitz-continuous with respect to the second argument, i.e., the following estimate holds 
 

, , , : ( , ) ( , )1 2 1 2 1 2L 0 t I y y R F t y F t y L y y           
 

Let ˆ
ny  denotes the value of the numerical solution which the Euler scheme would yield if 

( )n 1 n 1y Y t  . Then the GAE can be expressed as 
 

ˆ( )

ˆ ˆ: ( ) ( ) ( ) [ , ] { [ , ]}

n n

n n n n n n n n 1 n 1 n 1 n 1 n 1 n 1

e h LAE y y

E Y y Y y y y e h Y hF t Y y hF t y     



            

 

Then, using the Lipschitz continuity of F, we obtain the estimate 
 

( ) ( )n n 1E e h 1 hL E     
 

 



By recursion on n, we find 
 

( )

( )

( )
[ ( ) .. ( ) ] ( ) ( ) ( )

n 0L t tn
n 1

n

h

1 hL 1 e 1
E 1 1 hL 1 hL e h he h h

hL L





   
         

 

Note that for the Euler method the quantity ( ) ( ) , ( , )1
n 1 n2

h Y h t t   
  . Hence, we can 

write 
( )

,
n 0L t t

n

e 1 M
E h n 0

L 2




    

 

where 
[ , ]

max ( )
0 nt t

M Y





 . It follows that the GAE tends to zero as the integration step h 

shrinks to zero – the Euler method is convergent.  

 

 

 

 

 

 

 



The following example show that consistency alone is not sufficient for convergence! 
 

Consider the following integration scheme 
 

( , )k 1 k k 1 k ky 4y 3y 2hF t y     

 

This scheme is consistent with the order equal 1. To see this, we compare the exact power 

series expansion of the solution  

 

( ) ( ) ( ) ( ) ( )2 21
n 1 n n n2

Y t Y t hY t h Y t o h
      

 

with the approximate expansion implied by the numerical formula … 

 

( ...)

( )

21
k 1 k k 1 k k k k k k2

2 23
k k2

Y 4Y 3Y 2hY 4Y 3 Y hY h Y 2hY

Y hY h Y o h

 
            

    
 

 

Hence, the exact and approximate expansions agree up to the linear term meaning that the 

proposed scheme is of the 1
st
  order. 

 

 



Let us apply this scheme to the test problem 
 

( ) ( )

( )

y t y t

y 0 1

  



 

 

which has the exact solution  ( ) tY t e . 
 

The application our 1
st
-order  scheme yields the sequence of values which satisfy the 

following recurrent relation 

 

( ) ( )k 1 k k 1 k k k 1y 4y 3y 2h y 4 2h y 3y          

 

We want to fins an explicit formula for the numerical solution. To this aim, we have to solve 

the following linear difference (not differential !) equation 
 

( ) , , ,..k 1 k k 1y 4 2h y 3y 0 k 1 2       
 

We will use the following starting conditions  based on the exact solution 
 

, h

0 1y 1 y e   
 

 



In order to find the analytical solution, we assume that  
 

k

ky s  
 

 

where the number  s is to be found. Insertion of  this formula to the difference equation yields 

the following quadratic equation for s 

 

( )2s 4 2h s 3 0     
 

which has two roots   

 

) ,2 2

1 2s 2 h 1 4h h s 2 h 1 4h h           
  

Using a power series expansion ( )21
2

1 1 O      , for we obtain for h 1  

 

( ) , ( ) ( )2 2

1 2s 1 h O h s 3 1 h O h       

 

The solution of the finite difference equation is       
k k

k 1 1 2 2y C s C s   
 

 

 



The coefficients C1 and C2 are chosen such that the starting conditions are satisfied. Note that 

typically both of them are different than zero. 

 

Now, we claim that the proposed schemed is in fact completely useless. Indeed, the Reader 

should note that the second root s2 is never smaller than 3, thus with k the second term is the 

solution will rise without limits, which is in clear contradiction to the behavior of true 

solution.  In other words, lim k
k

y


   no matter how small we choose the time step h, i.e. 

our scheme is unconditionally unstable. 

 

Summarizing,  any  reasonable integration scheme has to be consistent and also stable. The 

latter property means essentially that the scheme should not generate artificial unbounded 

components of the approximate solution. Usually, the numerical schemes are stable only when 

the time integration step  h is sufficiently small, meaning that they are conditionally stable. 

Some schemes (as a rule, they are implicit) can be unconditionally stable, i.e. they bring 

qualitatively correct behavior of approximate solution with arbitrary large time steps. The 

convergence to the exact solution can be obtained only when a numerical scheme is both 

consistent and stable: 

Consistence + Stability = Convergence 



The basic example of an unconditionally stable scheme is the Implicit Euler method.  
  

 

The formula of this method is 

[ , ]

k 1

k 1 k k

F

1 k 1 k 1 k 1y y h F t y y hF



         

The following properties hold (the proof is left to the Reader as an exercise!): 

 The implicit Euler method is the 1
st
-order scheme 

 The implicit Euler method is unconditionally stable scheme (hint: stability the stability 

analysis using as before the test problem ( ) ( ) , ( ) 0y t y t y 0 Y   . You should arrive at 

the conclusion that the sequence { , ,.., ,..}0 1 ky y y approaches monotonically zero, no 

matter how large is the time step h). 
 

Other unconditionally stable scheme is the trapezoidal method (known also as the Crank-

Nicholson scheme). The formula of this scheme is 
 

( )1
k 1 k k k 12y y h F F     

 

 



Clearly, the above formula is the “arithmetic average” of the explicit and implicit Euler 

formulae.  
 

It is, again, lest to the Reader to show that: 

 The trapezoidal method is 2
nd

-order accurate. 

 It is unconditionally stable, however it can produce artificially oscillating numerical 

solutions if the time step h is not sufficiently small (consider the test problem with the 

real and negative value of  λ. 
 

 

 

 

 

 

 

 

 

 

 

 



CONSTRUCTION OF THE HIGHER-ORDER INTEGRATION SCHEMES 
 

We will discuss shortly the issue of a design of higher-order integration schemes.  
 

The natural approach is the application of the higher-order Taylor expansion. We will show 

how this approach works for 2
nd

 –order schemes. We begin with the Taylor’s expansion 

formula    
 

( ) ( ) ( ) ( ) ( )2 31
2

Y t h Y t hY t h Y t O h       
 

The function Y = Y(t) is the solution of the differential equation. Hence, one can express two 

first derivatives of Y in terms of the given function F and its derivatives as follows 
 

( ) [ , ( )]

( ) [ , ( )] [ , ( )] ( ) [ , ( )] [ , ( )] [ , ( )]t y t y

Y t F t Y t

Y t F t Y t F t Y t Y t F t Y t F t Y t F t Y t

 

          
 

 

After insertion, we obtain the generic 2
nd

 –order integration scheme 

 

( ) ( ) ( , ) ( )( , )21
k k k k t y k k2

y t h y t hF t y h F F F t y        

 

 



The above procedure can be extended easily to the higher-order schemes. However, such 

approach is not practical because it involves higher-order partial derivatives of F, which can 

be difficult (sometimes impossible) for explicit evaluation. We would prefer to deal some 

alternative schemes which use only the values of F but not its derivatives! 

 

Such alternative approach to construct higher-order schemes which are convenient for 

practical use is exemplified by the Runge-Kutta family of methods. The general procedure is 

pretty complicated – here we discuss the derivation of the 2
nd

-order methods. 
 

The general formula of the 2
nd

-order Runge-Kutta method is 
 

( ) ( )

( , )

[ , ]

k k 1 1 2 2

1 k k

2 k k 1

y t h y t w K w K

K hF t y

K hF t h y K 

   



   

 

 

We need to find such parameters w1, w2, α and β that the above formula is of the second 

order. To this aim, we will transform the above formula using the Taylor expansions to the 

form which can be directly compared to the generic 2
nd

 -order scheme. 

 
 

 



 

The calculations go as follows … 

 

( ) ( ) [ , ( )] { , ( ) [ , ( )]}

( ) [ , ( )] { [ , ( )] [ , ( )]

[ , ( )] [ , ( )] ( )}

k k 1 k k 2 k k k k

k 1 k k 2 k k t k k

2

y k k k k

Y t h Y t w hF t Y t w hF t h Y t hF t Y t

Y t w hF t Y t w h F t Y t F t Y t h

F t Y t hF t Y t O h

 





      

      

    
 

After a simple algebra we get 

 

( ) ( ) ( ) [ , ( )] ( )[ , ( )] ( )2 3

k k 1 2 k k 2 t 2 y k kY t h Y t w w hF t Y t h w F w F F t Y t O h          
 

 

The obtained formula is equivalent to the generic 2
nd

-order scheme only if 

 

, , 1
1 2 2 2

w w 1 w       

 

We have obtained 3 conditions for 4 parameters – the solution is not unique. In fact, we have 

infinitely many 2
nd

-order methods of this sort.  

 

 



Two most popular variants are: 

 

The Heun method: ,1
1 2 2

w w 1         
 

( ) ( ) ( )

( , )

[ , ]

1
k k 1 22

1 k k

2 k k 1

y t h y t K K

K hF t y

K hF t h y K

   



   

 

 

The modified Cauchy-Euler: , , 1
1 2 2

w 0 w 1       
 

( ) ( )

( , )

[ , ]

k k 2

1 k k

1 1
2 k k 12 2

y t h y t K

K hF t y

K hF t h y K

  



   

 

 

Higher-order methods can be derived in the similar manner. The calculation are, however, 

rather complicated. For instance, in order to design a 4
th

 –order method one has to determine 

13 coefficients. Again, the choice is not unique as the number of equation to satisfy is “only” 

11.  

 



The most popular variant is the RK4 scheme defined follows 
 

( ) ( ) ( )

( , )

[ , ]

[ , ]

[ , ]

1
k k 1 2 3 46

1 k k

1 1
2 k k 12 2

1 1
3 k k 22 2

4 k k 3

y t h y t K 2K 2K K

K hF t y

K hF t h y K

K hF t h y K

K hF t h y K

     



  

  

  

 

 

 

 

 

 

 

 

 

 

 

 



GENERALIZATION FOR THE SYSTEMS OF ODES 
 

The numerical integration schemes design for the single 1
st
-order ordinary differential 

equation can be easily extended for the systems of such equations. All  we have to do is to 

replace the scalar quantities by the vector ones. But the real issue is that in practice we often 

obtain differential system which are not in the standard form, i.e., this are not the systems of 

the 1
st
-order equations solved with respect to the first derivatives of the unknown functions. 

 

Consider the following example. The simple two-dimensional model of the ballistic flight in 

the uniform air and gravity field can be written as  

 

   

2 2

2 2

mx cx x y

my mg cy x y







    

      
 

 

 

 



In the above, m stands for the mass of the projectile, c is the coefficient of the aerodynamic 

drag and  g is the gravity acceleration. The position of the projectile is identified by means of 

two coordinates: the horizontal  x and the vertical y.  

 

The initial condition for the ballistic flight of the projectile are  
 

( ) , ( )

( ) cos( ) , ( ) sin( )0 0

x 0 0 y 0 0

x 0 u y 0 u 

 

  

 

 

where u0 is the initial velocity and α is the angle of the initial inclination of the trajectory with 

respect to the ground. 
 

The above system is not in the standard form, however it can be transformed to such. To this 

end, we defined a set of new functions 

 

( ) ( ) , ( ) ( )

( ) ( ) , ( ) ( )

1 2

43

z t x t z t x t

z t y t z t y t

 

 
 

 

 

Then, the following standard system is equivalent to the original one (here /k c m  ) … 
 



1 2

2 2

2 2 2 4

3 4

2 2

4 4 2 4

z z

z k z z z

z z

z g k z z z

 

   


 

     

 

 

The above system can be also written conveniently in the vector form    ( ) [ , ( )]t t t z F z , 

where the vector right-hand side function F is  

 

( , ,.., )

( , ,.., )
[ , ( )]

( , ,.., )

( , ,.., )

1 1 4 2

2 2

2 1 4 2 2 4

3 1 4 4

2 2

3 1 4 4 2 4

f t z z z

f t z z k z z z
t t

f t z z z

f t z z k z z z




  
 


   

F z

 
 

Finally, also the initial conditions are transformed as well 

 

( ) , ( ) cos( ) , ( ) , ( ) sin( )1 2 0 3 4 0z 0 0 z 0 u z 0 0 z 0 u      



 

In order to deal with the standard differential systems the numerical schemes are re-

formulated to the vector forms.  

For instance, we have: 
 

[ , ]

( )

[ , ] ( )

[ , ]

( )

[ , ]

[ , ]

[ , ]

[ , ]

st

k 1 k k k

1
k 1 k 1 22

nd

1 k

2 k k 1

1
k 1 k 1 2 3 46

1 k

1 1
2 k k 12 2

1 1
3 k k 22 2

4 k k 3

t 1 order Euler

h t 2 order Heun RK2

h t h

2 2

h t

h t h

h t h

h t h







  

  


 
   

    






  

  

  

k

k

y y F y

y y k k

k F y

k F y k

y y k k k k

k F y

k F y k

k F y k

k F y k

( )th4 order Runge Kutta RK4 





 

 



In practice, “raw” forms of the high-order Runge-Kutta methods are seldom in use. Usually, 

well design numerical codes use some kind of the time step adaption and error control. It 

means that the magnitude of the time step h is automatically tuned in the integration 

process. In such case, some strategy of the step adjustment is necessary.  

 

Typically, such strategy can be based on the comparison between numerical solutions 

obtained (for the same time instant) by the same scheme, but with different time steps. For 

example, one can use the 4
th

 –order Runge-Kutta scheme for the time step h and then 

compared it with the solution obtained when two steps with the length h/2 are performed 

instead. However, much more efficient way is to compare approximate solutions obtained  by 

two schemes of different order and such that the number of evaluations of derivatives (i.e., 

references to the right-hand side function F ) is as small as possible.  

 

The example of such approach is the Runge-Kutta-Fehlberg algorithm.  

 

It uses six F evaluations in each integration step. Then, a pair of the numerical solutions are 

detrermined for the time instant k 1t t  : 

 k 1y   - by means if the 4
th

-order formula, 

 ˆ
k 1y   - by means of the 5

th
 –order formula. 

 



If these two solutions do not agree to a specified accuracy, the step size is reduced by the 

factor s. It the agreement is better than required, the time step is increased (s >1).  
 

The complete set of the formulae describing the Runge-Kutta-Fehlberg algorithm  (often 

referred to as RKF45) can be written as follows: 
 

[ , ]

[ , ]

[ , ]

[ , ]

[ , ]

[ ,

1 k

1 1
2 k k 14 4

3 3 9
3 k k 1 28 32 32

1932 7200 729612
4 k k 1 2 313 2197 2197 2197

439 3680 845
5 k k 1 2 3 4216 513 4104

8 3544 18591
6 k k 1 2 32 27 2565

h t

h t h

h t h

h t h

h t h 8

h t h 2



  

   

    

     

     

kk F y

k F y k

k F y k k

k F y k k k

k F y k k k k
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4 54104 40
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k 1 k 1 3 4 5216 2565 4101 5     y y k k k k  

 

ˆ 16 6656 28561 9 2
k 1 k 1 3 4 5 635 12825 56430 50 52      y y k k k k k  

 

,
ˆ

h
4opt

k 1 k 1

h sh s
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y y

 

 



More recent and popular algorithms,  belonging  to so called “embedded” Runge-Kutta 

schemes , are: 

 Bogacki-Shampine (order 2/ order 3 embedded pair) – implemented in MATLAB as 

ode23 command, 

 Dorman-Prince (order 4/ order 5 embedded pair) - implemented in MATLAB as ode45 

command. 
 

Final remarks: 
 

 Alternative approach to achieve higher-order methods (and step control) – the multistep 

methods (to be discussed in the “Numerical Methods” course). The multistep methods 

achieve higher-order accuracy by using the “history” of the right-hand side function F. 

These methods can be explicit or implicit. Smart combination of both leads to the 

predictor-corrector methods. Also, automatic step adaption may be incorporated, 

although it may be rather tricky. 
 

 Special implicit methods are design to deal with so called stiff systems. These are the 

systems where very different characteristic time scales coexist in the system dynamic 

response. Typical example: coupled oscillation of the elements which flexibility 

properties are very much different (think about a big mass attached to a bending beam by 

means of a pliant spring). The problem of stiffness and the design of appropriate methods 

is among the topics of the  “Numerical Methods” course. 


