CS-II LAB 2

OBJECTIVES:

1. Developing C functions implementing the composite trapezoidal and Simpson quadratures.
2. Application of these functions to a test example.
3. Performing the error analysis.

EXERCISES:

1) Write the general function double trapez(double a, double b, int n, double (*fun)(double)). Here we denote: \mathbf{a}, \mathbf{b} - the end points of the integration interval, \mathbf{n} - a number of the subintervals, fun - a pointer to an integrated "dummy" function which has a single argument of the type double and returns a type double value.
2) Write the general function double simpson(double a, double b, int \boldsymbol{n}, double (*fun)(double)). The arguments are the same as for the function trapez above.
3) Write a code for the test function $g(x)=\frac{1}{1+x^{2}}$
4) Write a main function which calculates the value of the integral
$\int_{0} \mathrm{~g}(\mathrm{x}) \mathrm{dx}$ using trapez and simpson for $\mathbf{n}=10,20, \ldots, 100$. Compare these results with the exact value of this integral and calculate the error (difference between the exact and approximate value) as a function of \mathbf{n} for both methods.
5) Make the plots showing how the integration error changes with \mathbf{n} for both methods (use Grapher or Excel)
