COMPUTER SCIENCE 2

Lab meeting I: Polynomial interpolation

1. Write a function double lagrange (double x_{-}int[], double y_{-}int[], int n, double x) which calculates the value of the n-th order Lagrange's polynomial $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$ defined for the set of nodes $\{\mathrm{x}(0), \mathrm{y}(0)\}, \ldots,\{\mathrm{x}(\mathrm{n}), \mathrm{y}(\mathrm{n})\}$, for a given value of x .

$$
P_{n}(x)=y(0) \cdot L_{0}(x)+\ldots+y(n) \cdot L_{n}(x) \quad, \quad L_{k}(x)=\prod_{j-1}^{n} \frac{x-x_{j}}{x_{k}-x_{j}} \quad, \quad k=0,1, ., n
$$

2. Create an input file interpolation_data.ini on the disk containing

		// order of $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$
5		
0.0	1.0	//
1.0	3.0	.
3.0	-2.0	.
5.0	-5.0	.
8.0	-1.0	.
10.0	2.0	$/ /$
$x_{-} \operatorname{int}(0)$		

3. Write the main function which performs the following actions

- It opens and reads the file interpolation_data.ini
- It calculates the interpolation polynomial $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$ at 101 equally spaced points in the closed interval $[\mathrm{x}(0), \mathrm{x}(\mathrm{n})]$.
- It opens and writes the output disk file interpolation_results.dat in the following manner

$$
\begin{array}{ll}
\mathrm{x}(0) & \mathrm{P}_{\mathrm{n}}(\mathrm{x}(0)) \\
\mathrm{x}(0)+\mathrm{h} & \mathrm{P}_{\mathrm{n}}(\mathrm{x}(0)+\mathrm{h}) \\
\mathrm{x}(0)+2 \mathrm{~h} & \mathrm{P}_{\mathrm{n}}(\mathrm{x}(0)+2 \mathrm{~h}) \\
\ldots \ldots \ldots . ~
\end{array}
$$

4. Make a plot of the tabulated function using Excel of Grapher. Check whether the conditions of interpolation are satisfied.
5. Write the function double Bad(double \boldsymbol{x}) according to the formula $\mathrm{g}(\mathrm{x})=\frac{1}{1+10 \mathrm{x}^{2}}$ and compute the interpolating polynomial defined for uniformly distributed nodes in the interval $[-1,1]$. Choose tabulation points as in the Section 3. Repeat calculations for $\mathrm{n}=6,20$ and 40. Make plots of the function $\mathrm{g}(\mathrm{x})$ and the computed polynomials in Excel or Grapher. Repeat calculations using the Chebyshev nodes $\mathrm{x}_{\mathrm{k}}^{\mathrm{CH}}=\cos \left(\frac{2^{*} \mathrm{k}+1}{2^{*} \mathrm{n}+2} \pi\right), \mathrm{k}=0,1, . ., \mathrm{n}$.
6. Write the function double Newton(double x_int[], double y_int[], int n, double x) implementing the Newton's method of polynomial interpolation. Note that the first stage of the calculations is to compute the vector of divided differences $\{\mathrm{y}(0), \mathrm{y}(0,1), \mathrm{y}(0,1,2), \ldots, \mathrm{y}(0, . ., \mathrm{n})\}$. This stage depends on the interpolation nodes, but it is independent of the choice of particular value of x. Think how to avoid multiple re-calculation of finite differences while tabulating the interpolating polynomial $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$. Modify the main function so that it uses Newton instead of Lagrange and compare obtained plots.
