CS-II LAB 3

THE OBJECTIVES:

- 1. The use of the bisection method to solve the nonlinear equation
- 2. The use of the secant and Newton methods
- 3. The investigation how the number of iterations depends on the prescribed accuracy

EXCERSISES:

Write a function **double bisec(double a**, **double b**, **double eps**, **double (*fun)(double))** which calculates a root of a function *fun.

Write a program which solves the nonlinear equation: cos(t) = t by the bisection method, using the function **bisec**

WRITE A PROGRAM WHICH:

- Reads the accuracy **eps** (from the keabord),
- Solves the nonlinear equation,
- Shows on the screen the value of the root, the accuracy and the number of performed iterations.

The program should contain the definition of function which describes the nonlinear equation:

 $f(t) = \cos(t) - t$

FURTHER STEPS

- 1. Modify the program so it performs calculations for all eps = 2^{-3} , ..., 2^{-20} .
- 2. Make the graph showing the "**number of iterations**" as a function of **eps** (use the log scale).
- 3. Extend the program to calculate the root also by the secant formula:

 $t_{n+1}=t_n-f(t_n) * (t_n-t_{n-1}) / (f(t_n)-f(t_{n-1}))$ as well as by the Newton's method: $t_{n+1}=t_n-f(t_n) / f'(t_n)$

4. Modify the program so it calculates the root of the equation:

$$\cos(t) = w^*t$$
, for
 $w = 0.5, 0.6, \dots, 15$ and $eps = 10^{-6}$

5. Show in the graph, how the root depends on the parameter **w**.