Computer Science II - Lab 4

The objective is to solve numerically the following initial value problem (IVP)
$\left\{y^{\prime}(t)=-y(t)+e^{-t} \cos (t) \quad, \quad t>0\right.$
$\{y(0)=0$
using the Euler and $4^{\text {th }}$-order Runge-Kutta methods. The exact solution is $\mathrm{Y}(\mathrm{t})=\mathrm{e}^{-\mathrm{t}} \sin (\mathrm{t})$.

1. Write the C function double derivative(double t, double \boldsymbol{y}) which calculates the right-hand side of the differential equation, i.e. $f(t, y)=-y+e^{-t} \cos (t)$.
2. Write the C function double solution(double t, double \boldsymbol{y}) which calculates $\mathrm{Y}(\mathrm{t})$.
3. Write the main function which solves the IVP using the Euler method. The following parameters are to be read from the keyboard: H - the time step, NS - the number of time steps. This way, the integration interval is $[0, \mathrm{NS} * \mathrm{H}]$. The formula of the Euler's method is

$$
y_{k+1}=y_{k}+H \cdot f\left(t_{k}, y_{k}\right) \quad, \quad k=0,1, . ., N S-1
$$

where, in our case, $\mathrm{y}_{0}=0$. At each step, dump the values of $\mathrm{t}_{\mathrm{k}}, \mathrm{y}_{\mathrm{k}}, \mathrm{Y}\left(\mathrm{t}_{\mathrm{k}}\right)$ and $e_{k}=Y\left(t_{k}\right)-y_{k}$ to an output file on the hard disk.
4. Repeat calculations with $(\mathrm{H}, \mathrm{NS})=(0.01,3000),(0.005,6000)$ and $(0.0025,12000)$. Compare the error distributions on the same plot using Grapher.
5. Write a new version of the main function which uses the $4^{\text {th }}$ order R-K method, i.e.
$\mathrm{q}_{1}=\mathrm{H} \cdot \mathrm{f}\left(\mathrm{t}_{\mathrm{k}}, \mathrm{y}_{\mathrm{k}}\right)$
$\mathrm{q}_{2}=\mathrm{H} \cdot \mathrm{f}\left(\mathrm{t}_{\mathrm{k}}+\mathrm{H} / 2, \mathrm{y}_{\mathrm{k}}+\mathrm{q}_{1} / 2\right)$
$\mathrm{q}_{3}=\mathrm{H} \cdot \mathrm{f}\left(\mathrm{t}_{\mathrm{k}}+\mathrm{H} / 2, \mathrm{y}_{\mathrm{k}}+\mathrm{q}_{2} / 2\right)$
$\mathrm{q}_{4}=\mathrm{H} \cdot \mathrm{f}\left(\mathrm{t}_{\mathrm{k}}+\mathrm{H}, \mathrm{y}_{\mathrm{k}}+\mathrm{q}_{3}\right)$
$y_{k+1}=y_{k}+\left(q_{1}+2 q_{2}+2 q_{3}+q_{4}\right) / 6$
6. Repeat the calculations with three different step sizes H and the corresponding numbers of steps NS. Compare the numerical accuracy of the $4^{\text {th }}$ order R-K and the Euler methods.

