CS-II LAB 5

Solving a system of ODE's with the $4^{\text {th }}$-order Runge-Kutta method

Write a C code which solves the system of the ordinary differential equations describing the motion of the cannon ball (of radius R and mass m) shot with the initial velocity V_{0}, at the height h above the water level (α_{0} denotes the shot angle). The motion of the ball is governed by the following system of the ODE's and the initial conditions
$m \frac{d^{2} x}{d t^{2}}=-C_{D} S \frac{\rho}{2} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} \frac{d x}{d t}$
$m \frac{d^{2} y}{d t^{2}}=-C_{D} S \frac{\rho}{2} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} \frac{d y}{d t}-m g$
$\mathrm{x}\left(\mathrm{t}_{0}\right)=0 \quad, \quad \mathrm{y}\left(\mathrm{t}_{0}\right)=\mathrm{h}$
$\frac{\mathrm{dx}}{\mathrm{dt}}\left(\mathrm{t}_{0}\right)=\mathrm{V}_{0} \cos \alpha_{0} \quad, \quad \frac{\mathrm{dy}}{\mathrm{dt}}\left(\mathrm{t}_{0}\right)=\mathrm{V}_{0} \sin \alpha_{0}$
where:
\boldsymbol{g} - acceleration due to gravity $\left(9,81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)$,
$\boldsymbol{\rho}$ - density of the medium (water -1000

$$
\left.\frac{\mathrm{kg}}{\mathrm{~m}^{3}}, \text { air }-1,2 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)
$$

$S=\pi \boldsymbol{R}^{2}$ - ball's reference area,
$\boldsymbol{C}_{\boldsymbol{D}}-$ drag coefficient .
Derive an equivalent system of four $1^{\text {st }}$ order differential equations. This system can be view as a particular example of a general one, define as follows

$$
\begin{aligned}
& \mathbf{z}^{\prime}(\mathrm{t})=\mathbf{F}(\mathrm{t}, \mathbf{z}(\mathrm{t})) \quad, \quad \text { where } \\
& \mathbf{z}(\mathrm{t})=\left[\mathrm{z}_{1}(\mathrm{t}), \ldots, \mathrm{z}_{\mathrm{n}}(\mathrm{t})\right]^{\mathrm{T}} \\
& \mathbf{F}(\mathrm{t}, \mathbf{z}(\mathrm{t}))=\left[\mathrm{F}_{1}, \ldots, \mathrm{~F}_{\mathrm{n}}\right]^{\mathrm{T}}\left(\mathrm{t}, \mathrm{z}_{1}(\mathrm{t}), \ldots, \mathrm{z}_{\mathrm{n}}(\mathrm{t})\right) .
\end{aligned}
$$

Write the function flying_ball which calculates the vector of the first derivatives, i.e. the vector $\mathbf{F}(\mathrm{t}, \mathbf{z}(\mathrm{t}))$, corresponding to the obtained differential system (DS). In order to account for a variable density you can write the function where ρ is defined as a piecewise constant function of the coordinate y.

Write the routine rk4_step which performs a single integrations step of the general DS, using the $4^{\text {th }}$-order RK method:
$\mathbf{z}(\mathrm{t}+\Delta \mathrm{t})=\mathbf{z}(\mathrm{t})+\left(\mathbf{k}_{1}+2 \mathbf{k}_{2}+2 \mathbf{k}_{3}+\mathbf{k}_{4}\right) / 6$,
$\mathbf{k}_{1}=\Delta \mathrm{t} \cdot \mathbf{F}(\mathrm{t}, \mathbf{z}(\mathrm{t}))$,
$\mathbf{k}_{2}=\Delta \mathrm{t} \cdot \mathbf{F}\left(\mathrm{t}+\Delta \mathrm{t} / 2, \mathbf{z}(\mathrm{t})+\mathbf{k}_{1} / 2\right)$,
$\mathbf{k}_{3}=\Delta \mathrm{t} \cdot \mathbf{F}\left(\mathrm{t}+\Delta \mathrm{t} / 2, \mathbf{z}(\mathrm{t})+\mathbf{k}_{2} / 2\right)$,
$\mathbf{k}_{4}=\Delta \mathrm{t} \cdot \mathbf{F}\left(\mathrm{t}+\Delta \mathrm{t}, \mathbf{z}(\mathrm{t})+\mathbf{k}_{3}\right)$.
Note: in order to obtain a really universal tool, the list of the arguments of rk4_step should contain a pointer to a user-defined function which computes the derivatives (such as the flying_ball function).

Write the main function which reads from the keyboard a value of the time step and the number of steps (or the integration time). Design the integration loop, where the routine rk4_step is used at each cycle. Dump the current value of the time variable t and the four components of the vector $\mathbf{z}(\mathrm{t})$ to a disk output file at each cycle of the loop.

Run sample calculations for $\mathrm{m}=5 \mathrm{~kg}, \mathrm{~S}=$ $0.008 \mathrm{~m}^{2}, C_{D}=0.4, V_{0}=150 \mathrm{~m} / \mathrm{s}, \alpha=20^{\circ}$, $\mathrm{h}=200 \mathrm{~m}$. and $\Delta \mathrm{t}=0.01$. Adjust the number of steps so that the ball sinks in the water under the line $\mathrm{y}=-\mathrm{h} / 2$.

Use Grapher to plot the ball's trajectory and the velocity components versus time. Repeat the calculations with a different time step (like $\Delta t=0.005$ and 0.02) and make sure that the obtained results are "step-independent".

