CS-II LAB 5

Solving a system of ODE's with the $4^{\text {th }}$-order Runge-Kutta method

Write a C code which solves the system of the ordinary differential equations describing the motion of the pendulum. The motion of the pendulum is defined by the following ODE and initial conditions:

$$
\begin{aligned}
& \frac{d^{2} \alpha}{d t^{2}}=-\frac{g}{l} \sin \alpha \\
& \alpha\left(t_{0}\right)=\alpha_{0} \\
& \frac{d \alpha}{d t}\left(t_{0}\right)=\sigma_{0}
\end{aligned}
$$

where:
\boldsymbol{g} - acceleration due to gravity $\left(9,81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)$,
l - length of the pendulum,
$\boldsymbol{\alpha}$ - angle defining current position of the pendulum.

Derive an equivalent system of two $1^{\text {st }}$ order differential equations . This system can be view as a particular example of a general one, define as follows

$$
\begin{aligned}
& \mathbf{z}^{\prime}(\mathrm{t})=\mathbf{F}(\mathrm{t}, \mathbf{z}(\mathrm{t})) \quad, \quad \text { where } \\
& \mathbf{z}(\mathrm{t})=\left[\mathrm{z}_{1}(\mathrm{t}), . ., \mathrm{z}_{\mathrm{n}}(\mathrm{t})\right]^{\mathrm{T}}, \\
& \mathbf{F}(\mathrm{t}, \mathbf{z}(\mathrm{t}))=\left[\mathrm{F}_{1}, . ., \mathrm{F}_{\mathrm{n}}\right]^{\mathrm{T}}\left(\mathrm{t}, \mathrm{z}_{1}(\mathrm{t}), . ., \mathrm{z}_{\mathrm{n}}(\mathrm{t})\right) .
\end{aligned}
$$

Write the function rhs which calculates the vector of the first derivatives, i.e. the vector $\mathbf{F}(\mathrm{t}, \mathbf{z}(\mathrm{t})$), corresponding to the obtained differential system (DS).

Use the routine vrk4 which can be downloaded from the server. This function implements the $4^{\text {th }}$-order RK method:

$$
\begin{aligned}
& \mathbf{z}(\mathrm{t}+\Delta \mathrm{t})=\mathbf{z}(\mathrm{t})+\left(\mathbf{k}_{1}+2 \mathbf{k}_{2}+2 \mathbf{k}_{3}+\mathbf{k}_{4}\right) / 6, \\
& \mathbf{k}_{1}=\Delta \mathrm{t} \cdot \mathbf{F}(\mathrm{t}, \mathbf{z}(\mathrm{t})), \\
& \mathbf{k}_{2}=\Delta \mathrm{t} \cdot \mathbf{F}\left(\mathrm{t}+\Delta \mathrm{t} / 2, \mathbf{z}(\mathrm{t})+\mathbf{k}_{1} / 2\right), \\
& \mathbf{k}_{3}=\Delta \mathrm{t} \cdot \mathbf{F}\left(\mathrm{t}+\Delta \mathrm{t} / 2, \mathbf{z}(\mathrm{t})+\mathbf{k}_{2} / 2\right), \\
& \mathbf{k}_{4}=\Delta \mathrm{t} \cdot \mathbf{F}\left(\mathrm{t}+\Delta \mathrm{t}, \mathbf{z}(\mathrm{t})+\mathbf{k}_{3}\right) .
\end{aligned}
$$

Write the main function which reads from the keyboard a value of the time step and the number of steps (or the integration
time). Design the integration loop, where the routine $v r k 4$ is used at each cycle. Dump the current value of the time variable t and the all components of the vector $\mathbf{z}(\mathrm{t})$ to an output file at each cycle of the loop.

Run sample calculation which computes $\alpha(\mathrm{t})$ and angular velocity $\mathrm{d} \alpha(\mathrm{t}) / \mathrm{dt}$ for $0<\mathrm{t}<10$ s. In addition compute total energy (sum of potential and kinetic energies) of the system as a function of time - $\mathrm{E}(\mathrm{t})$. Create plots visualizing computed solution.

