LECTURE 7
 Stress in fluids. Constitutive relation and NeWtonian fluid.

MATHEMATICAL MODEL FOR INTERNAL FORCES IN FLUIDS. STRESS TENSOR.

According to Cauchy hypothesis, the surface (or interface) reaction force acting between two adjacent portions of a fluid can be characterized by its surface vector density called the stress.

Thus, for an infinitesimal piece $d A$ of the interface $\partial \Omega_{l} \cap \partial \Omega_{2}$, we have (see figure)

$$
d \boldsymbol{F}=\boldsymbol{\sigma} d A \quad \text { and } \quad \boldsymbol{F}_{\Omega_{2} \rightarrow \Omega_{l}}=\int_{\partial \Omega_{1} \cap \partial \Omega_{2}} \boldsymbol{\sigma} d A
$$

The stress vector σ is not a vector field: it depends not only on the point \boldsymbol{x} but also on the orientation of the surface element $d A$ or - equivalently - on the vector \boldsymbol{n} normal (perpendicular) to $d A$ at the point \boldsymbol{x}.

From the $\mathbf{3}^{\text {rd }}$ principle of Newton's dynamics (action-reaction principle) we have

$$
\sigma(x, n)=-\sigma(x,-n)
$$

We will show that the value of stress vector σ can be expressed by means of a tensor field. To this aim, consider a portion of fluid in the form of small tetrahedron as depicted in the figure below.

The front face $\triangle A B C$ belongs to the plane which is describes by the following formula

$$
(\boldsymbol{n}, \boldsymbol{x}) \equiv n_{j} x_{j}=h \quad, \quad h-\text { small }
$$

number.
The areas of the faces of the tetrahedron are S , $\mathrm{S}_{1}, \mathrm{~S}_{2}$ and S_{3} for $\triangle A B C, \triangle O B C, \triangle A O C$ and $\triangle A B O$, respectively.
Obviously, $S \sim O\left(h^{2}\right)$.
Moreover, the following relations hold for $j=1,2,3$:
$S_{j}=S \cos \left[\Varangle\left(\boldsymbol{n}, \boldsymbol{e}_{j}\right)\right]=S \cdot\left(\boldsymbol{n}, \boldsymbol{e}_{j}\right)=S n_{j}$
The volume of the tetrahedron is $\quad V_{\Omega} \sim O\left(h^{3}\right)$.

The momentum principle for the fluid contained inside the tetrahedron volume reads

$$
\underbrace{\frac{d}{d t} \int_{\Omega} \rho \boldsymbol{v} d \boldsymbol{x}}_{\begin{array}{c}
\text { time derivative } \\
\text { of the momentum }
\end{array}}=\boldsymbol{F}_{\begin{array}{c}
\text { vol } \\
\text { total volume } \\
\text { force }
\end{array}}+\underbrace{\boldsymbol{F}_{\text {surf }}}_{\begin{array}{c}
\text { total surface } \\
\text { force }
\end{array}}
$$

We need to calculate the total surface force $\boldsymbol{F}_{\text {surf }}$. We have:
on $\triangle A B C$:

$$
\begin{aligned}
& \boldsymbol{\sigma}(\boldsymbol{x}, \boldsymbol{n})=\boldsymbol{\sigma}(\boldsymbol{0}, \boldsymbol{n})+O(h) \\
& \boldsymbol{F}_{\text {surf }}^{\Delta A B C}=S \boldsymbol{\sigma}(\boldsymbol{0}, \boldsymbol{n})+O\left(h^{3}\right)
\end{aligned}
$$

on $\triangle O B C: \quad \boldsymbol{\sigma}\left(\boldsymbol{x},-\boldsymbol{e}_{1}\right)=-\boldsymbol{\sigma}\left(\boldsymbol{x}, \boldsymbol{e}_{1}\right)=-\boldsymbol{\sigma}\left(\boldsymbol{0}, \boldsymbol{e}_{1}\right)+O(h)$

$$
\boldsymbol{F}_{\text {surf }}^{\triangle O B C}=-S_{1} \boldsymbol{\sigma}\left(\boldsymbol{0}, \boldsymbol{e}_{1}\right)+O\left(h^{3}\right)=-S n_{l} \boldsymbol{\sigma}\left(\boldsymbol{0}, \boldsymbol{e}_{1}\right)+O\left(h^{3}\right)
$$

on $\triangle A O C: \quad \boldsymbol{\sigma}\left(\boldsymbol{x},-\boldsymbol{e}_{2}\right)=-\boldsymbol{\sigma}\left(\boldsymbol{x}, \boldsymbol{e}_{2}\right)=-\boldsymbol{\sigma}\left(\boldsymbol{0}, \boldsymbol{e}_{2}\right)+O(h)$

$$
\boldsymbol{F}_{\text {surf }}^{\triangle A O C}=-S_{2} \boldsymbol{\sigma}\left(\boldsymbol{0}, \boldsymbol{e}_{2}\right)+O\left(h^{3}\right)=-S n_{2} \boldsymbol{\sigma}\left(\boldsymbol{0}, \boldsymbol{e}_{2}\right)+O\left(h^{3}\right)
$$

on $\triangle A O B: \quad \boldsymbol{\sigma}\left(\boldsymbol{x},-\boldsymbol{e}_{3}\right)=-\boldsymbol{\sigma}\left(\boldsymbol{x}, \boldsymbol{e}_{3}\right)=-\boldsymbol{\sigma}\left(\boldsymbol{0}, \boldsymbol{e}_{3}\right)+O(h)$

$$
\boldsymbol{F}_{\text {surf }}^{\triangle A O B}=-S_{3} \boldsymbol{\sigma}\left(\boldsymbol{0}, \boldsymbol{e}_{3}\right)+O\left(h^{3}\right)=-S n_{3} \boldsymbol{\sigma}\left(\boldsymbol{0}, \boldsymbol{e}_{3}\right)+O\left(h^{3}\right)
$$

When the above formulas are inserted to the equation of motion we get

$$
\underbrace{\frac{d}{d t} \int_{\Omega} \rho \boldsymbol{v} d \boldsymbol{x}}_{O\left(h^{3}\right)}=\underset{O\left(h^{3}\right)}{\boldsymbol{F}_{v o l}}+\underbrace{S\left[\boldsymbol{\sigma}(\boldsymbol{0}, \boldsymbol{n})-n_{j} \boldsymbol{\sigma}\left(\boldsymbol{0}, \boldsymbol{e}_{j}\right)\right]}_{O\left(h^{2}\right)}+O\left(h^{3}\right)
$$

When $h \rightarrow 0$ the above equation reduces to

$$
\boldsymbol{\sigma}(\boldsymbol{0}, \boldsymbol{n})-n_{j} \boldsymbol{\sigma}\left(\boldsymbol{0}, \boldsymbol{e}_{j}\right)=0
$$

In general case, the vertex O is not the origin of the coordinate system and the field of stress is time dependent.

Hence, we can write

$$
\boldsymbol{\sigma}(t, \boldsymbol{x}, \boldsymbol{n})=n_{j} \boldsymbol{\sigma}\left(t, \boldsymbol{x}, \boldsymbol{e}_{j}\right)
$$

In the planes oriented perpendicularly to the vectors $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}$ or \boldsymbol{e}_{3}, the stress vector can be written as

$$
\boldsymbol{\sigma}\left(t, \boldsymbol{x}, \boldsymbol{e}_{j}\right)=\sigma_{i j}(t, \boldsymbol{x}) \boldsymbol{e}_{i}
$$

Thus, the general formula for the stress vector takes the form

$$
\boldsymbol{\sigma}(t, \boldsymbol{x}, \boldsymbol{n})=n_{j} \boldsymbol{\sigma}\left(t, \boldsymbol{x}, \boldsymbol{e}_{j}\right)=\sigma_{i j}(t, \boldsymbol{x}) n_{j} \boldsymbol{e}_{i} \equiv \boldsymbol{\Xi}(t, \boldsymbol{x}) \boldsymbol{n}
$$

We have introduced the matrix $\boldsymbol{\Xi}$ which represents the stress tensor. The stress tensor depends on time and space coordinates, i.e., we actually have the tensor field.
Note that the stress tensor Ξ can be viewed as the linear mapping (parameterized by t and \boldsymbol{x}) between vectors in 3-dimensional Euclidean space

$$
\Xi: E^{3} \ni \boldsymbol{w}=w_{j} \boldsymbol{e}_{j} \mapsto \sigma_{i j} w_{j} \boldsymbol{e}_{i} \in E^{3}
$$

In particular

$$
\Xi(\boldsymbol{n}) \equiv \boldsymbol{\Xi} \boldsymbol{n}=\sigma_{i j} n_{j} \boldsymbol{e}_{i}=\boldsymbol{\sigma}
$$

i.e., the action of Ξ on the normal vector n at some point of the fluid surface yields the stress vector σ at this point.

It is often necessary to calculate the normal and tangent stress components at the point of some surface.

Normal component is equal

$$
\boldsymbol{\sigma}_{n}=(\boldsymbol{n} \cdot \boldsymbol{\Xi} \boldsymbol{n}) \boldsymbol{n} \equiv \underbrace{(\boldsymbol{n}, \boldsymbol{\Xi} \boldsymbol{n})}_{\begin{array}{c}
\text { inner }(\text { scalar }) \\
\text { product }
\end{array}} \boldsymbol{n}
$$

Tangent component can be expressed as

$$
\boldsymbol{\sigma}_{\tau}=\boldsymbol{\sigma}-\sigma_{n} \boldsymbol{n}=\sigma_{i j} n_{j} \boldsymbol{e}_{i}-\left(\sigma_{k m} n_{k} n_{m}\right) n_{i} \boldsymbol{e}_{i}=\underbrace{\left[\sigma_{i j} n_{j}-\left(\sigma_{k m} n_{k} n_{m}\right) n_{i}\right]}_{\left(\sigma_{\tau}\right)_{i}} \boldsymbol{e}_{i}
$$

or, equivalently as

$$
\boldsymbol{\sigma}_{\tau}=\boldsymbol{n} \times(\boldsymbol{\sigma} \times \boldsymbol{n})
$$

Indeed, using the identity

$$
a \times(b \times c)=(a, c) b-(a, b) c
$$

for $\boldsymbol{a}=\boldsymbol{n}, \boldsymbol{b}=\boldsymbol{\sigma}, \boldsymbol{c}=\boldsymbol{n}$ we obtain

$$
\boldsymbol{\sigma}_{\tau}=\boldsymbol{n} \times(\boldsymbol{\sigma} \times \boldsymbol{n})=\underbrace{(\boldsymbol{n}, \boldsymbol{n})}_{l} \boldsymbol{\sigma}-\underbrace{(\boldsymbol{n}, \boldsymbol{\sigma}) \boldsymbol{n}}_{\sigma_{n}}=\boldsymbol{\sigma}-\boldsymbol{\sigma}_{n}
$$

Constitutive relation

The constitutive relation for the (simple) fluids is the relation between stress tensor Ξ and the deformation rate tensor \boldsymbol{D}. This relation should be postulated in a form which is frameinvariant and such that the stress tensor is symmetric.

Let's remind two facts:

- The velocity gradient $\nabla \boldsymbol{v}$ can be decomposed into two parts: the symmetric part \boldsymbol{D} called the deformation rate tensor and the skew-symmetric part \boldsymbol{R} called the (rigid) rotation tensor.

$$
\nabla \boldsymbol{v}=\boldsymbol{D}+\boldsymbol{R}
$$

- Tensor \boldsymbol{D} can be expressed as the sum of the spherical part $\boldsymbol{D}_{S P H}$ and the deviatoric part $\boldsymbol{D}_{D E V}$
where

$$
\boldsymbol{D}_{S P H}=\frac{1}{3} \operatorname{tr} \boldsymbol{D} \cdot \boldsymbol{I}=\frac{1}{3}(\nabla \cdot \boldsymbol{v}) \boldsymbol{I}
$$

and

$$
\boldsymbol{D}_{D E V}=\boldsymbol{D}-\frac{1}{3} \operatorname{divv} \cdot \boldsymbol{I} \Rightarrow\left(\boldsymbol{D}_{D E V}\right)_{i j}=\frac{1}{2}\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)-\frac{1}{3} \frac{\partial v_{k}}{\partial x_{k}} \delta_{i j}
$$

The general constitutive relation for a (simple) fluid can be written in the form of the matrix "polynomial"

$$
\boldsymbol{\Xi}=\mathfrak{P}(\boldsymbol{D})=\boldsymbol{\Xi}_{0}+c_{0} \boldsymbol{I}+c_{1} \boldsymbol{D}+c_{2} \boldsymbol{D}^{2}+c_{3} \boldsymbol{D}^{3}+\ldots
$$

where the coefficients are the function of $\mathbf{3}$ invariants of the tensor \boldsymbol{D}, i.e.

$$
c_{k}=c_{k}\left[I_{l}(\boldsymbol{D}), I_{2}(\boldsymbol{D}), I_{3}(\boldsymbol{D})\right] .
$$

Consider the characteristic polynomial of the tensor \boldsymbol{D}

$$
p_{\boldsymbol{D}}(\lambda)=\operatorname{det}[\boldsymbol{D}-\lambda \boldsymbol{I}]=-\lambda^{3}+I_{1} \lambda^{2}-I_{2} \lambda+I_{3}
$$

The Cayley-Hamilton Theorem states that the matrix (or tensor) satisfies its own characteristic polynomial meaning that

$$
p_{\boldsymbol{D}}(\boldsymbol{D})=-\boldsymbol{D}^{3}+I_{1} \boldsymbol{D}^{2}-I_{2} \boldsymbol{D}+I_{3}=\mathbf{0}
$$

Thus, the $3^{\text {rd }}$ power of \boldsymbol{D} (and automatically all higher powers) can be expressed as a linear combinations of I, D and D^{2}.
Hence, the most general polynomial constitutive relation is given by the $2^{\text {nd }}$ order formula

$$
\boldsymbol{\Xi}=\mathfrak{P}(\boldsymbol{D})=\boldsymbol{\Xi}_{0}+c_{0} \boldsymbol{I}+c_{1} \boldsymbol{D}+c_{2} \boldsymbol{D}^{2}
$$

NEWTONIAN FLUIDS

The behavior of many fluids (water, air, others) can be described quite accurately by the linear constitutive relation. Such fluids are called Newtonian fluids.

For Newtonian fluids we assume that:

- c_{0} is a linear function of the invariant I_{l},
- c_{1} is a constant,
- $c_{2}=0$.

If there is no motion we have the Pascal Law: pressure in any direction is the same. It means that the matrix $\boldsymbol{\Xi}_{0}$ should correspond to a spherical tensor and

$$
\boldsymbol{\Xi}_{0} \boldsymbol{n}=-p \boldsymbol{n} \Rightarrow \boldsymbol{\Xi}_{0}=-p \boldsymbol{I}
$$

The constitutive relation for the Newtonian fluids can be written as follows

$$
\boldsymbol{\Xi}=-p \boldsymbol{I}+\zeta \underset{\boldsymbol{\Xi}_{l}(\boldsymbol{D})}{(\nabla \cdot \boldsymbol{v}) \boldsymbol{I}+2 \mu \boldsymbol{D}_{D E V}=-p \boldsymbol{I}}+\underbrace{\left(\zeta-\frac{2}{3} \mu\right)(\nabla \cdot \boldsymbol{v})}_{\boldsymbol{\Xi}_{0}} \boldsymbol{I}+\underbrace{(\zeta \mu \boldsymbol{D}}_{c_{0}}
$$

where

- μ - (shear) viscosity (the physical unit in SI is $\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}$)
- ζ - bulk viscosity (the same unit as μ) ; usually $\zeta \ll \mu$ and can be assumed zero.

The constitutive relation can be written in the index notation

$$
\sigma_{i j}=\left[-p+\left(\zeta-\frac{2}{3} \mu\right) \frac{\partial v_{k}}{\partial x_{k}}\right] \delta_{i j}+\mu\left[\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right]
$$

For an incompressible fluid we have $\nabla \cdot \boldsymbol{v} \equiv \operatorname{div} \boldsymbol{v} \equiv \frac{\partial v_{j}}{\partial x_{j}}=0 \quad$ and the constitutive relation reduces to the simpler form

$$
\boldsymbol{\Xi}=-p \boldsymbol{I}+2 \mu \boldsymbol{D}
$$

or, in the index notation

$$
\sigma_{i j}=-p \delta_{i j}+\mu\left[\frac{\partial}{\partial x_{j}} v_{i}+\frac{\partial}{\partial x_{i}} v_{j}\right]
$$

Example: Calculate the tangent stress in the wall shear layer.

The velocity field is defined as follows:

$$
v_{1}\left(x_{1}, x_{2}\right)=U_{w a l l} x_{2} / H \quad, \quad v_{2}\left(x_{1}, x_{2}\right) \equiv 0
$$

and the pressure is constant. At the bottom wall, the normal vector which points outwards is $\boldsymbol{n}=[0,-1]$.

Then

$$
\begin{aligned}
& \boldsymbol{\sigma}=\boldsymbol{\Xi} \boldsymbol{n}=-p \\
& =[0,-1]
\end{aligned} \quad \boldsymbol{n}+2 \mu \boldsymbol{D} \boldsymbol{n}=\left[\begin{array}{l}
0 \\
p
\end{array}\right]+2 \mu\left[\begin{array}{cc}
\frac{\partial v_{1}}{\partial x_{1}} & \frac{1}{2}\left(\frac{\partial v_{1}}{\partial x_{2}}+\frac{\partial v_{2}}{\partial x_{1}}\right) \\
\frac{1}{2}\left(\frac{\partial v_{1}}{\partial x_{2}}+\frac{\partial v_{2}}{\partial x_{1}}\right) & \frac{\partial v_{2}}{\partial x_{2}}
\end{array}\right]\left[\begin{array}{c}
0 \\
-1
\end{array}\right]=.
$$

According to the action-reaction principle, the tangent stress at the bottom wall is

$$
\tau_{\text {wall }}=\left.\mu \frac{\partial}{\partial x_{2}} v_{1}\right|_{\text {wall }}=\frac{\mu U_{w}}{H}
$$

